浏览全部资源
扫码关注微信
1. 矿山互联网应用技术国家地方联合工程实验室,江苏 徐州 221008
2. 中国矿业大学物联网(感知矿山)研究中心,江苏 徐州 221008
3. 徐州市物联网产业发展研究中心,江苏 徐州 221008
[ "冯仕民(1983-),男,博士,中国矿业大学讲师,主要研究方向为物联网、传感器融合、人机交互、机器学习、人工智能等。" ]
[ "刘忠育(1985-),男,中国矿业大学信息与控制工程学院博士生,主要研究方向为语义物联网、行为识别、3D场景语义理解。" ]
[ "俞啸(1989-),男,中国矿业大学博士,主要研究方向为故障诊断方法、嵌入式系统与物联网技术、机器学习与人工智能技术。" ]
[ "孟磊(1982-),男,博士,中国矿业大学助理研究员,主要研究方向为基于物联网的矿山环境感知、矿井排水优化理论与方法等。" ]
[ "赵志凯(1983-),男,博士,中国矿业大学助理研究员,主要研究方向为物联网、机器学习、模式识别、数据挖掘等。" ]
[ "丁恩杰(1962-),男,中国矿业大学教授、博士生导师,主要研究方向为矿山信息化、煤矿综合监测监控、矿井无线传感器网络、矿山物联网等。" ]
纸质出版日期:2018-12-30,
网络出版日期:2018-12,
移动端阅览
冯仕民, 刘忠育, 俞啸, 等. 矿山物联网人员情境描述与不安全行为识别[J]. 物联网学报, 2018,2(4):93-98.
SHIMIN FENG, ZHONGYU LIU, XIAO YU, et al. Workers’ context description and unsafe behavior recognition in Internet of things for mines. [J]. Chinese journal on internet of things, 2018, 2(4): 93-98.
冯仕民, 刘忠育, 俞啸, 等. 矿山物联网人员情境描述与不安全行为识别[J]. 物联网学报, 2018,2(4):93-98. DOI: 10.11959/j.issn.2096-3750.2018.00083.
SHIMIN FENG, ZHONGYU LIU, XIAO YU, et al. Workers’ context description and unsafe behavior recognition in Internet of things for mines. [J]. Chinese journal on internet of things, 2018, 2(4): 93-98. DOI: 10.11959/j.issn.2096-3750.2018.00083.
矿山的环境复杂,智能化识别此类行为需要数据驱动方法和基于机器可读的领域知识的方法,然而矿山物联网的数据缺乏语义信息,矿山人员状态信息和不安全行为知识没有标准的表示方法。为解决上述问题,提出了一种基于语义本体的人员状态信息感知描述方法及一种数据驱动和知识驱动相结合的矿山人员不安全行为识别框架。首先介绍了语义本体在物联网领域的概况,阐述了矿山人员不安全行为识别的重要性和必要性,介绍了人员行为识别、情境感知和语义本体等研究背景,引出了矿山人员状态信息感知描述方法。基于此情境建模,提出了一种矿山人员不安全行为识别框架并应用于矿山人员不佩戴防护与安全装备的不安全行为识别,最后总结并展望了人工智能方法在矿山物联网应用层研究中的前景。
The mine is a complicated environment.The intelligent recognition of such behavior requires not only the data-driven activity recognition method
but also the machine-readable domain knowledge based approach.However
the data of IoT for mines lacks the semantic information.Besides
there is no standard way of describing the worker’s context and representing the knowledge of worker’s unsafe behavior.In order to solve the above problems
a semantic ontology based approach to describing the worker’s context and a hybrid method based framework for worker’s unsafe behavior recognition were presented.This method combines the data-driven approach and the knowledge-driven approach.Firstly
an introduction to the semantic ontology in the Internet of things was given.Then
the importance and necessity of worker’s unsafe behavior recognition was introduced.After that
the research background on human activity recognition
context-awareness and semantic ontology was presented.This was followed by the semantic ontology based approach to the worker’s context description.Based on the context modeling
the framework that combined the data-driven method and the knowledge-driven method for the worker’s unsafe behavior recognition was proposed.The application of the framework was illustrated with the recognition of a kind of worker’s unsafe behavior who don’t wear the protective and safety equipment.Finally
the conclusions were drawn and the prospect of using the artificial intelligence method in the application layer of mine IoT was presented.
矿山物联网不安全行为行为识别本体人工智能
mine Internet of thingsunsafe behavioractivity recognitionontologyartificial intelligence
AGARWAL R, FERNANDEZ D G, ELSALEH T ,et al. Unified IoT ontology to enable interoperability and federation of testbeds[C]// 3rd IEEE World Forum on Internet of Things(WF-IoT),December 12-14,2016,Reston,USA. Piscataway:IEEE Press, 2016: 70-75.
THULUVA A S, ANICIC D, RUDOLPH S.Semantic web of things for industry 4 . 0 in 2017 Doctoral Consortium,Challenge,Industry Track,Tutorials and Posters[C]// RuleML+RR 2017,July 11-15,2017,London,UK. CEUR-WS, 2017.
OLAKOVI A, HADIALI M . Internet of things(IoT):a review of enabling technologies,challenges and open research issues[J]. Computer Networks, 2018(144): 17-39.
HARDIN S . Tim Berners-Lee:the semantic web-web of machine-processable data[J]. Bulletin of the American Society for Information Science and Technology, 2005,31(3): 12-13.
JUAN Y E , LORCAN C , SIMON D ,et al. Ontology-based models in pervasive computing systems[J]. The Knowledge Engineering Review, 2007,22(4): 315-347.
COMPTON M, BARNAGHI P, BERMUDEZ L ,et al. The SSN ontology of the W3C semantic sensor network incubator group[J]. Journal of Web Semantics, 2012,17(4): 25-32.
丁恩杰, 施卫祖, 张申 ,等. 矿山物联网顶层设计[J]. 工矿自动化, 2017,43(9): 1-11.
DING E J, SHI W Z, ZHANG S ,et al. Top-down design of mine Internet of things[J]. Industry and Mine Automation, 2017,43(9): 1-11.
XUE X, CHANG J K, LIU Z Z . Context-aware intelligent service system for coal mine industry[J]. Computers in Industry, 2014,65(2): 291-305.
CHENG G, ZHANGY L, WANG F ,et al. Construction and application of formal ontology for mine[J]. Transactions of Nonferrous Metals Society of China, 2011,21: 577-582.
姚建铨, 丁恩杰, 张申 ,等. 感知矿山物联网愿景与发展趋势[J]. 工矿自动化, 2016,42(9): 1-5.
YAO J Q, DING E J, ZHANG S ,et al. Prospect of perception mine Internet of things and its development trend[J]. Industry and Mine Automation, 2016,42(9): 1-5.
任玉辉 . 煤矿员工不安全行为影响因素分析及预控研究[D]. 北京:中国矿业大学, 2014.
REN Y H . Analysis and pre-control research on the influencing factors of unsafe behavior of coal mine employees[D]. Beijing:China University of Mining and Technology, 2014.
CHEN H, QI H, LONG R ,et al. Research on 10-year tendency of China coal mine accidents and the characteristics of human factors[J]. Safety Science, 2012,50(4): 745-750.
WANG L, CAO Q, ZHOU L . Research on the influencing factors in coal mine production safety based on the combination of DEMATEL and ISM[J]. Safety Science, 2018,103: 51-61.
DUFF A R, ROBERTSON I T, PHILLIPS R A ,et al. Improving safety by the modification of behaviour[J]. Construction Management and Economics, 1994,12(1): 67-78.
GAYATHRI K S, EASWARAKUMAR K S, ELIAS S . Probabilistic ontology based activity recognition in smart homes using Markov Logic network[J]. Knowledge-Based Systems, 2017,121: 173-184.
WOZNOWSKI P, KALESHI D, OIKONOMOU G ,et al. Classification and suitability of sensing technologies for activity recognition[J]. Computer Communications, 2016(89): 34-50.
KUNZE K, LUKOWICZ P, JUNKER H ,et al. Where am I:recognizing on-body positions of wearable sensors[C]// Location and Context-Awareness,May,2005. Berlin:Springer, 2005: 264-275.
RIBONI D, BETTINI C . COSAR:hybrid reasoning for context-aware activity recognition[J]. Personal and Ubiquitous Computing, 2011,15(3): 271-289.
DEY A K . Understanding and using context[J]. Personal and Ubiquitous Computing, 2001,5(1): 4-7.
CAO Y, KLAMMA R, HOU M ,et al. Follow me,follow you——spatiotemporal community context modeling and adaptation for mobile information systems[C]// The Ninth International Conference on Mobile Data Management (MDM 2008),April 27-30,2008,Beijing,China. Piscataway:IEEE Press, 2008.
MOORE P, HU B, ZHU X ,et al. A survey of context modeling for pervasive cooperative learning[C]// 2007 First IEEE International Symposium on Information Technologies and Applications in Education,November 23-25,2007,Kunming,China. Piscataway:IEEE Press, 2007: 1-6.
GRUBER T R . A translation approach to portable ontology specifications[J]. Knowledge Acquisition, 1993,5(2): 199-220.
LAMY J . Owlready:ontology-oriented programming in python with automatic classification and high level constructs for biomedical ontologies[J]. Artificial Intelligence in Medicine, 2017(80): 11-28.
0
浏览量
864
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构