浏览全部资源
扫码关注微信
[ "廖勇(1982- ),男,四川自贡人,博士,重庆大学副研究员、博士生导师,主要研究方向为下一代无线通信技术、AI 及其在行业中的应用。" ]
[ "姚海梅(1992- ),女,江西吉安人,重庆大学硕士生,主要研究方向为AI及其在无线通信中的应用。" ]
[ "花远肖(1994- ),男,四川阆中人,重庆大学硕士生,主要研究方向为AI及其在无线通信中的应用。" ]
纸质出版日期:2019-03-30,
网络出版日期:2019-03,
移动端阅览
廖勇, 姚海梅, 花远肖. 一种基于深度学习的物联网信道状态信息获取算法[J]. 物联网学报, 2019,3(1):8-13.
YONG LIAO, HAIMEI YAO, YUANXIAO HUA. Channel state information acquisition algorithm based on deep learning for IoT. [J]. Chinese journal on internet of things, 2019, 3(1): 8-13.
廖勇, 姚海梅, 花远肖. 一种基于深度学习的物联网信道状态信息获取算法[J]. 物联网学报, 2019,3(1):8-13. DOI: 10.11959/j.issn.2096-3750.2019.00085.
YONG LIAO, HAIMEI YAO, YUANXIAO HUA. Channel state information acquisition algorithm based on deep learning for IoT. [J]. Chinese journal on internet of things, 2019, 3(1): 8-13. DOI: 10.11959/j.issn.2096-3750.2019.00085.
针对基于大规模多输入多输出(MIMO)的物联网系统中用户侧将信道状态信息(CSI)发送到基站时反馈开销大的问题,提出一种基于深度学习的CSI反馈网络用来反馈CSI。该网络首先使用卷积神经网络(CNN)提取信道特征矢量和最大池化层通过降维来达到压缩CSI的目的,然后使用全连接和CNN将压缩的CSI解压,恢复原始信道。仿真结果表明,与现有的CSI反馈方法相比,所提出的CSI反馈网络恢复的CSI更接近原始信道,重构质量明显提高。
To solve the problem of high feedback overhead when the user sends channel state information (CSI) to the base station in massive multiple input multiple output (MIMO) based on Internet of things system
a CSI feedback network based on deep learning was proposed to feedback CSI.Firstly
the proposed network used convolutional neural network (CNN) to extract channel feature vectors and maxpooling to compress the data.Then the compressed CSI was decompressed by using full connection and CNN to restore the original channel.The simulation results show that compared with the existing CSI feedback methods
the CSI recovered by the proposed CSI feedback network is closer to the original channel
and the reconstruction quality is improved significantly.
大规模MIMO物联网CSI反馈深度学习
massive MIMOInternet of thingsCSI feedbackdeep learning
何海珊 . 移动通信技术在物联网中的应用探讨[J]. 信息通信, 2017,5(173): 225-226.
HE H S . Application of mobile communication technology in Internet of things[J]. Information & Communications, 2017,5(173): 225-226.
ADAME T, BEL A, BELLALTA B ,et al. IEEE 802.11ah:the Wi-Fi approach for M2M communications[J]. IEEE Wireless Communications, 2015,21(6): 144-152.
LEE B M . Calibration for channel reciprocity in industrial massive MIMO antenna systems[J]. IEEE Transactions on Industrial Informatics, 2018,14(1): 221-230.
DING G, GAO X, XUE Z ,et al. Massive MIMO for distributed detection with transceiver impairments[J]. IEEE Transactions on Vehicular Technology, 2018,67(1): 604-617.
ZHANG Z, TEH K C, LI K H . Application of compressive sensing to limited feedback strategy in large-scale multiple-input single-output cellular networks[J]. IET Communications, 2014,8(6): 947-955.
GE A, ZHANG T, HU Z ,et al. Principal component analysis based limited feedback scheme for massive MIMO systems[C]// International Symposium on Personal,Indoor and Mobile Radio Communications. IEEE, 2016: 326-331.
GE A, ZHANG T, ZENG Z ,et al. PCA based limited feedback scheme for massive MIMO with kalman filter enhancing performance[C]// IEEE/CIC International Conference on Communications in China (ICCC). IEEE, 2015: 1-6.
NAGASHIMA R, OHTSUKI T, JIANG W ,et al. Channel prediction for massive MIMO with channel compression based on principal component analysis[C]// International Symposium on Personal,Indoor and Mobile Radio Communications. IEEE, 2016: 1-6.
WEN C K, SHIH W T, JIN S . Deep learning for massive MIMO CSI feedback[J]. IEEE Wireless Communications Letters, 2018,7(5): 748-751.
WANG T, WEN C K, JIN S ,et al. Deep learning-based CSI feedback approach for time-varying massive MIMO channels[J]. IEEE Wireless Communications Letters, 2018: 1-4.
SIM M S, PARK J, CHAE C ,et al. Compressed channel feedback for correlated massive MIMO systems[C]// 2014 IEEE Globecom Workshops (GC Wkshps). IEEE, 2014: 327-332.
TIAN R, LIANG Y, LI T . Overlapping user grouping in IoT oriented massive MIMO systems[C]// International Conference on Computing. IEEE, 2017: 255-259.
0
浏览量
1648
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构