浏览全部资源
扫码关注微信
1. 大连理工大学信息与通信工程学院,辽宁 大连116023
2. 大连海事大学信息科学技术学院,辽宁 大连116026
3. 山东大学控制科学与工程学院,山东 济南250002
[ "李轩衡(1989- ),男,辽宁沈阳人,博士,大连理工大学信息与通信工程学院讲师,主要研究方向为认知无线网络、动态频谱接入、网络资源协同优化、数据驱动的智能通信等。" ]
[ "孙怡(1964- ),女,辽宁沈阳人,博士,大连理工大学信息与通信工程学院教授,主要研究方向为图像处理。" ]
[ "王洁(1981-),男,河南安阳人,博士,大连海事大学教授、博士生导师,主要研究方向为智能无线感知、无线定位跟踪、人工智能和无线网络。" ]
[ "张海霞(1979- ),女,山东菏泽人,山东大学教授,主要研究方向为大数据、人工智能辅助的无线通信系统关键技术。" ]
纸质出版日期:2019-06-30,
网络出版日期:2019-06,
移动端阅览
李轩衡, 孙怡, 王洁, 等. 数据驱动下基于感知频谱的物联网数据传输[J]. 物联网学报, 2019,3(2):35-46.
XUANHENG LI, YI SUN, JIE WANG, et al. Data-driven data transmission of the Internet of things based on sensing spectrum. [J]. Chinese journal on internet of things, 2019, 3(2): 35-46.
李轩衡, 孙怡, 王洁, 等. 数据驱动下基于感知频谱的物联网数据传输[J]. 物联网学报, 2019,3(2):35-46. DOI: 10.11959/j.issn.2096-3750.2019.00103.
XUANHENG LI, YI SUN, JIE WANG, et al. Data-driven data transmission of the Internet of things based on sensing spectrum. [J]. Chinese journal on internet of things, 2019, 3(2): 35-46. DOI: 10.11959/j.issn.2096-3750.2019.00103.
面向海量数据造成的频谱短缺问题,以共享为解决手段,研究了运营商如何合理利用感知频谱传输数据。考虑物联网设备的局限性,设计了超密集认知异构网络架构,基于流量需求和感知开销设计了最优的接入控制和感知决策方法,以实现网络效用最大化。考虑感知频谱的不确定性,将最优规划方案建模成混合整数随机优化问题,并提出了数据驱动下基于统计特征的概率顽健求解方法,在可用带宽概率分布未知的情况下,统计满足各种服务请求的数据传输要求。
Facing the problem of spectrum shortage caused by the mass data
in order to share as a solution
how operators use the sensing spectrum reasonably to transmit data was studied.Considering the limitation of Internet of things(IoT) devices
the ultra-dense cognitive heterogeneous network architecture was designed
based on traffic demand and perception cost
an optimal access control and perception decision method was designed to maximize network utility.Considering the uncertainty of the perceived spectrum
the optimal programming scheme was modeled as a mixed integer stochastic optimization problem
and a data-driven probabilistic solution method based on statistical characteristics was proposed.In the case of unknown probability distribution of available bandwidth
data transmission requirements meeting various service requests were counted.
频谱共享感知频谱网络效用频谱不确定性数据驱动
spectrum sharingsensing spectrumnetwork utilityspectrum uncertaintydata-driven
AL-FUQAHA A, GUIZANI M, MOHAMMADI M ,et al. Internet of things:a survey on enabling technologies,protocols and applications[J]. IEEE Communications Surveys & Tutorials, 2015,17(4): 2347-2376.
WANG T, LI G, HUANG B,et.al . Spectrum analysis and regulations for 5G[M]. Berlin: Springer Publishing CompanyPress, 2017.
BHATTARAI S, PARK J M J, GAO B ,et al. An overview of dynamic spectrum sharing:ongoing initiatives,challenges,and a roadmap for future research[J]. IEEE Transactions on Cognitive Communications and Networking, 2016,2(2): 110-128.
HOYHTYA M, MAMMELA A, ESKOLA M ,et al. Spectrum occupancy measurements:a survey and use of interference maps[J]. IEEE Communications Surveys & Tutorials, 2016,18(4): 2386-2414.
TEHRANI R H, VAHID S, TRIANTAFYLLOPOULOU D ,et al. Licensed spectrum sharing schemes for mobile operators:a survey and outlook[J]. IEEE Communications Surveys & Tutorials, 2016,18(4): 2591-2623.
LI X, DING H, FANG Y ,et al. Collaborative spectrum trading and sharing for cognitive radio networks[M]. Berlin: SpringerPress, 2017.
HOSSAIN E, NIYATO D, KIM D I . Evolution and future trends of research in cognitive radio:a contemporary survey[J]. Wireless Communications and Mobile Computing, 2015(11): 1530-1564.
LI X, DING H, PAN M ,et al. Users first:service-oriented spectrum auction with a two-tier framework support[J]. IEEE Journal on Selected Areas in Communications, 2016,34(11): 2999-3013.
LI X, ZHAO N, SUN Y ,et al. Interference alignment based on antenna selection with imperfect channel state information in cognitive radio networks[J]. IEEE Transactions on Vehicular Technology, 2016,65(7): 5497-5511.
KHAN A A, REHMANI M H, RACHEDI A . Cognitive-radio-based Internet of things:applications,architectures,spectrum related functionalities,and future research directions[J]. IEEE Wireless Communications, 2017,24(3): 17-25.
RAWAT P, SINGH K D, BONNIN J M . Cognitive radio for M2M and Internet of things:a survey[J]. Computer Communications, 2016,94: 1-29.
WU Q, DING G, XU Y ,et al. Cognitive Internet of things:a new paradigm beyond connection[J]. IEEE Internet of Things Journal, 2014,1(2): 129-143.
ALI A, HAMOUDA W . Advances on spectrum sensing for cognitive radio networks:theory and applications[J]. IEEE Communications Surveys & Tutorials, 2017,19(2): 1277-1304.
AXELL E, LEUS G, LARSSON E G ,et al. Spectrum sensing for cognitive radio:state-of-the-art and recent advances[J]. IEEE Signal Processing Magazine, 2012,29(3): 101-116.
SOBRON I, DINIZ P S R, MARTINS W A ,et al. Energy detection technique for adaptive spectrum sensing[J]. IEEE Transactions on Communications, 2015,63(3): 617-627.
ZHANG X, CHAI R, GAO F . Matched filter based spectrum sensing and power level detection for cognitive radio network[C]// IEEE Global Conference on Signal and Information Processing. IEEE, 2014: 1267-1270.
HUANG G, TUGNAIT J K . On cyclostationarity based spectrum sensing under uncertain Gaussian noise[J]. IEEE Transactions on Signal Processing, 2013,61(8): 2042-2054.
ZHANG N, ZHANG S, ZHENG J ,et al. QoE driven decentralized spectrum sharing in 5G networks:potential game approach[J]. IEEE Transactions on Vehicular Technology, 2017,66(9): 7797-7808.
LI S, ZHENG Z, EKICI E ,et al. Maximizing social welfare in operator-based cognitive radio networks under spectrum uncertainty and sensing inaccuracy[C]// IEEE INFOCOM. IEEE, 2013: 953-961.
CHENG N, ZHANG N, LU N ,et al. Opportunistic spectrum access for CR-VANETs:a game-theoretic approach[J]. IEEE Transactions on Vehicular Technology, 2014,63(1): 237-251.
DING G, JIAO Y, WANG J ,et al. Spectrum inference in cognitive radio networks:algorithms and applications[J]. IEEE Communications Surveys & Tutorials, 2018,20(1): 150-182.
CHEN S, MA R, CHEN H H ,et al. Machine-to-machine communications in ultra-dense networks—a survey[J]. IEEE Communications Surveys & Tutorials, 2017,19(3): 1478-1503.
DING H, FANG Y, HUANG X ,et al. Cognitive capacity harvesting networks:architectural evolution toward future cognitive radio networks[J]. IEEE Communications Surveys & Tutorials, 2017,19(3): 1902-1923.
GOLDSMITH A . Wireless communications[M]. Cambridge: Cambridge University PressPress, 2005.
POLIK I, TERLAKY T . A survey of the S-lemma[J]. Siam Review, 2007,49(3): 371-418.
MARCUS M . An eigenvalue inequality for the product of normal matrices[J]. American Mathematical Monthly, 1956,63: 173-174.
SHI Y, HOU Y T, ZHOU H . Per-node based optimal power control for multi-hop cognitive radio networks[J]. IEEE Transactions on Wireless Communications, 2009,8(10): 5290-5299.
0
浏览量
454
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构