浏览全部资源
扫码关注微信
1. 电子科技大学信息与通信工程学院,四川 成都 611731
2. 北京市交通运行监测调度中心,北京 100161
3. 北京市交通信息中心,北京 100161
[ "熊凯(1991-),男,四川巴中人,电子科技大学博士生,主要研究方向为车联网资源分配、移动边缘计算和机器学习。" ]
[ "冷甦鹏(1973-),男,四川资中人,电子科技大学教授、博士生导师,主要研究方向为物联网、车联网、新一代宽带无线网络、无线自组织网、智能交通信息系统的资源管理、介质访问控制、路由、组网与互联、智能算法理论及技术应用等。" ]
[ "张可(1974-),男,河南新乡人,博士、研究员,北京市交通运行监测调度中心副主任,主要研究方向为智能交通技术研究与应用、北京市综合交通运行监测服务和运行分析。" ]
[ "刘浩(1977- ),男,四川资中人,博士,北京市交通信息心副主任,主要研究方向为智能交通技术交通建模和交通仿真等。" ]
纸质出版日期:2019-06-30,
网络出版日期:2019-06,
移动端阅览
熊凯, 冷甦鹏, 张可, 等. 车联雾计算中的异构接入与资源分配算法研究[J]. 物联网学报, 2019,3(2):20-27.
KAI XIONG, SUPENG LENG, KE ZHANG, et al. Research on heterogeneous radio access and resource allocation algorithm in vehicular fog computing. [J]. Chinese journal on internet of things, 2019, 3(2): 20-27.
熊凯, 冷甦鹏, 张可, 等. 车联雾计算中的异构接入与资源分配算法研究[J]. 物联网学报, 2019,3(2):20-27. DOI: 10.11959/j.issn.2096-3750.2019.00108.
KAI XIONG, SUPENG LENG, KE ZHANG, et al. Research on heterogeneous radio access and resource allocation algorithm in vehicular fog computing. [J]. Chinese journal on internet of things, 2019, 3(2): 20-27. DOI: 10.11959/j.issn.2096-3750.2019.00108.
随着智能交通的发展,自动驾驶、智能车载交互、安全预警等新型车载应用不断涌现,独立车辆依靠自身有限的计算资源难以运行这些种类繁多且具有大量计算需求和时延需求的应用。雾计算通过将计算任务分布在网络边缘的设备中,运用虚拟化、分布式计算和并行计算技术,使用户能够按需动态地获取计算能力、存储空间等服务。将雾计算架构应用于车联网能够有效缓解计算量大、低时延车载应用与车辆有限且不均的资源分布之间的矛盾。从分析车—车通信、车—基础设施通信以及车辆时延容忍网络通信的信道容量入手,建立车联网异构接入的多业务资源优化模型,通过联合调度各类车联雾资源,实现智能交通应用的高效处理。仿真结果表明,所提出的强化学习算法能够有效地应对异构车联雾架构下的资源优化。
With the development of intelligent transportation and the constant emergence of new vehicular on-board applications
such as automatic driving
intelligent vehicular interaction and safety driving.It is difficult for an independent vehicle to run a wide variety of applications with a large number of computing needs and time delay needs relying on its own limited computing resources.By distributing computing tasks in devices on the edge of the network
fog computing applies virtualization technology
distributed computing technology and parallel computing technology to enable users to dynamically obtain computing power
storage space and other services on demand.Applying fog computing architecture to Internet of vehicles can effectively alleviate the contradiction between the large computing-low delay demands and limited vehicular resources.By analyzing the channel capacity of vehicle-to-vehicle communication
vehicle-infrastructure communication and vehicle-time-delay tolerant network communication
an optimization model of heterogeneous access to multi-service resources for the Internet of vehicles was established
and various vehicle-to-fog resources were jointly dispatched to realize efficient processing of intelligent transportation applications.The simulation results show that the proposed reinforcement learning algorithm can effectively deal with the resource allocation in the heterogeneous vehicular fog architecture.
车联网车联雾车辆时延容忍网络Q学习算法资源分配
Internet of vehicles (IoV)vehicular fogvehicular delay tolerant network (VDTN)Q-learning algorithmresource allocation
PENG M , ZHANG K . Recent advances in fog radio access networks:performance analysis and radio resource allocation[J]. IEEE Access, 2016,4(99):1.
ZHANG H, QIU Y, LONG K ,et al. Resource allocation in NOMA-based fog radio access networks[J]. IEEE Wireless Communications, 2018,25(3): 110-115.
PARK S H , SIMEONE O , SHAMAI S . Joint optimization of cloud and edge processing for fog radio access networks[J]. IEEE Transactions on Wireless Communications, 2016,15(11): 7621-7632.
ZHANG H , QIU Y , CHU X ,et al. Fog radio access networks:mobility management,interference mitigation,and resource optimization[J]. IEEE Wireless Communications, 2017,24(6): 120-127.
QIAO G, LENG S, ZHANG K ,et al. Collaborative task offloading in vehicular edge multi-access networks[J]. IEEE Communications, 2018,56(8): 48-54.
NI J , ZHANG A , LIN X ,et al. Security,privacy,and fairness in fog-based vehicular crowdsensing[J]. IEEE Communications Magazine, 2017,55(6): 146-152.
TORNELL S M , CALAFATE C T , CANO J C ,et al. DTN protocols for vehicular networks:an application oriented overview[J]. IEEE Communications Surveys & Tutorials, 2017,17(2): 868-887.
FAN B, LENG S, YANG K . A dynamic bandwidth allocation algorithm in mobile networks with big data of users and networks[J]. IEEE Network, 2016,30(1): 6-10.
CHAKKAPHONG S, SUN Z . Multi-hop broadcast protocol in intermittently connected vehicular networks[J]. IEEE Transactions on Aerospace &Electronic Systems, 2018(99):1.
KUI X , SUN Y , ZHANG S ,et al. Characterizing the capability of vehicular fog computing in large-scale urban environment[J]. Mobile Networks and Applications, 2018,23(4): 1050-1067.
张海波, 栾秋季, 朱江 ,等. 车辆异构网中基于移动边缘计算的任务卸载与资源分配[J]. 物联网学报, 2018,2(3): 36-43.
ZHANG H B, LUAN Q J, ZHU J ,et al. Task offloading and resource allocation in vehicle heterogeneous networks with MEC[J]. Chinese Journal on Internet of Things, 2018,2(3): 36-43.
O'DONOGHUE B, MUNOS R, KAVUKCUOGLU K ,et al. Combining policy gradient and Q-learning[C]// International Conference on Learning Representations(ICIR), 2017.
张德干, 葛辉, 刘晓欢 ,等. 一种基于 Q-Learning 策略的自适应移动物联网路由新算法[J]. 电子学报, 2018,46(10): 2325-2332.
ZHANG D G, GE H, LIU X H ,et al. A new adaptive mobile Internet of things routing algorithm based on Q-learning strategy[J]. Acta Electronica Sinica, 2018,46(10): 2325-2332.
PICCOLI B, TOSIN A . Vehicular traffic:a review of continuum mathematical models[M]. New York: SpringerPress, 2009.
MACISAAC D . Feynman lectures on physics three-volume text now completely freely available online[J]. Physics Teacher, 2014,52(2): 126-126.
XIONG K, LENG S P, HU J ,et al. Smart network slicing for vehicular fog-RAN[J]. IEEE Transactions on Vehicular Technology, 2019,68(4): 3075-3085.
0
浏览量
840
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构