浏览全部资源
扫码关注微信
1. 西安电子科技大学综合业务网理论及关键技术国家重点实验室,陕西 西安 710071
2. 悉尼科技大学电气与数据工程系,新南威尔士 悉尼 2007
[ "王云鹏(1996- ),男,山西晋中人,西安电子科技大学通信工程学院硕士生,主要研究方向为智能交通系统和车联网中的资源分配。" ]
[ "罗渠元(1993- ),男,四川达州人,西安电子科技大学通信工程学院博士生,主要研究方向为智能交通系统、车联网中的内容分发和资源分配。" ]
[ "李长乐(1976- ),男,新疆博乐人,西安电子科技大学教授、博士生导师,主要研究方向为网联网控无人驾驶、智能网联汽车超视距感知、交通大数据分析及应用、大规模网络技术以及高动态网络技术等。" ]
[ "毛国强(1974- ),男,湖北宜昌人,悉尼科技大学教授、博士生导师,主要研究方向为智能交通技术、车联网、智慧公路与智能网联驾驶、下一代移动通信系统(5G)关键技术研发、物联网以及无线定位技术等。" ]
纸质出版日期:2019-09-30,
网络出版日期:2019-09,
移动端阅览
王云鹏, 罗渠元, 李长乐, 等. 基于智慧公路的行人检测技术研究与实现[J]. 物联网学报, 2019,3(3):84-89.
YUNPENG WANG, QUYUAN LUO, CHANGLE LI, et al. Research and implementation of pedestrian detection technology based on smart road. [J]. Chinese journal on internet of things, 2019, 3(3): 84-89.
王云鹏, 罗渠元, 李长乐, 等. 基于智慧公路的行人检测技术研究与实现[J]. 物联网学报, 2019,3(3):84-89. DOI: 10.11959/j.issn.2096-3750.2019.00123.
YUNPENG WANG, QUYUAN LUO, CHANGLE LI, et al. Research and implementation of pedestrian detection technology based on smart road. [J]. Chinese journal on internet of things, 2019, 3(3): 84-89. DOI: 10.11959/j.issn.2096-3750.2019.00123.
针对行人检测大多利用车载设备实现,存在检测功能单一、成本高昂,并且检测效率和可靠性低等问题,提出了一种基于智慧公路的行人检测技术。通过在道路侧部署大量低成本、高可靠性的智能物联网行人检测设备,实时检测周围环境中的行人信息,并且将预警信息以极低时延的无线通信技术提供给车辆,提高了道路安全性。目前已开发出该行人检测系统的原型机,实地测试结果表明,该行人检测系统能有效检测行人,在检测范围4 m内,单个设备检测的准确率达80%,多个设备交叉部署方式检测的准确率可达100%。
Aiming at the problem of single detection function
higher cost and lower detection efficiency and reliability for current pedestrian detection
which was mostly realized by vehicle mounted equipment
a pedestrian detection technology based on smart road was proposed.By deploying a large number of low-cost
highly reliable Internet of things devices on the road
real-time detection of pedestrian information in the surrounding environment was realized.Early warning information can be provided to vehicles with very low latency wireless communication technology
which can improve road safety.At present
the prototype of the pedestrian detection system has been developed
and verified by field test
the pedestrian detection system can detect pedestrians effectively.Within the detection range of 4 meters
the accuracy of single device can reach 80%
and the accuracy of multiple cross-deployed devices can reach 100%.
智慧公路物联网行人检测原型机
smart roadInternet of things (IoT)pedestrian detectionprototype
LYU Y, DUAN Y, KANG W ,et al. Traffic flow prediction with big data:a deep learning approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2015,16(2): 865-873.
DRESSLER F, HARTENSTEIN H, ALTINTAS O ,et al. Inter-vehicle communication:quo vadis[J]. IEEE Communications Magazine, 2014,52(6): 170-177.
闫生栋, 周帅鹏 . 基于 SPSS 统计分析的交通事故现状研究[J]. 现代商贸工业, 2019,40(13): 122-123.
YAN S D, ZHOU S P . Research on traffic accident status based on SPSS statistical analysis[J]. Modern Business Trade Industry, 2019,40(13): 122-123.
刘强, 陆化普, 张永波 ,等. 我国道路交通事故特征分析与对策研究[J]. 中国安全科学学报, 2006,16(6): 123-128.
LIU Q, LU H P, ZHANG Y B ,et al. Characteristic analysis and countermeasure study on road traffic accidents in China[J]. China Safety Science Journal, 2006,16(6): 123-128.
MISEIKIS J, BORGES P V K . Joint human detection from static and mobile cameras[J]. IEEE Transactions on Intelligent Transportation Systems, 2015,16(2): 1018-1029.
ETINGER A, BALAL N, LITVAK B ,et al. Non-imaging MM-wave FMCW sensor for pedestrian detection[J]. IEEE Sensors Journal, 2014,14(4): 1232-1237.
HU X, LI T, WU Z ,et al. Research and application of intelligent intrusion detection system with accuracy analysis methodology[J]. Infrared Physics & Technology, 2018,88: 245-253.
MASSOW K, KWELLA B, PFEIFLER N ,et al. Deriving HD maps for highly automated driving from vehicular probe data[C]// IEEE International Conference on Intelligent Transportation Systems. IEEE, 2016: 1745-1752.
LI Z, CHEN Z, WU Q M J ,et al. Real-time pedestrian detection with deep supervision in the wild[J]. Signal,Image and Video Processing, 2019,13(4): 761-769.
CAO Y, GUAN D, WU Y ,et al. Box-level segmentation supervised deep neural networks for accurate and real-time multispectral pedestrian detection[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019(150): 70-79.
LWOWSKI J, KOLAR P, BENAVIDEZ P ,et al. Pedestrian detection system for smart communities using deep convolutional neural networks[C]// System of Systems Engineering Conference. IEEE, 2017: 1-6.
元中华 . 浅谈智慧公路建设智慧路网[J]. 科技经济导刊, 2019,27(2): 33-34.
YUAN Z H . Talking about smart road and building intelligent road network[J]. Science and Economic Guide, 2019,27(2): 33-34.
孙玉 . 我国物联网产业发展趋势[J]. 物联网学报, 2017,1(3): 1-5.
SUN Y . The development trend of the Internet of things industry in China[J]. Chinese Journal on Internet of Things, 2017,1(3): 1-5.
0
浏览量
592
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构