浏览全部资源
扫码关注微信
[ "于翠屏(1983- ),女,辽宁抚顺人,博士,北京邮电大学副教授、博士生导师,主要研究方向为微波器件与射频系统、柔性微波电路。" ]
[ "刘元安(1963- ),男,四川乐至人,博士,北京邮电大学教授,主要研究方向为宽带移动通信技术、射频与微波器件、综合网络接入技术、移动终端与物联网等。" ]
[ "李杨柳(1995- ),女,山东临沂人,北京邮电大学硕士生,主要研究方向为柔性微波器件。" ]
[ "郭霞(1970- ),女,山东青岛人,北京邮电大学教授、博士生导师,主要研究方向为半导体光电子器件和器件物理。" ]
纸质出版日期:2019-09-30,
网络出版日期:2019-09,
移动端阅览
于翠屏, 刘元安, 李杨柳, 等. 柔性电子材料与器件的应用[J]. 物联网学报, 2019,3(3):102-110.
CUIPING YU, YUANAN LIU, YANGLIU LI, et al. Application of flexible electronic materials and devices. [J]. Chinese journal on internet of things, 2019, 3(3): 102-110.
于翠屏, 刘元安, 李杨柳, 等. 柔性电子材料与器件的应用[J]. 物联网学报, 2019,3(3):102-110. DOI: 10.11959/j.issn.2096-3750.2019.00125.
CUIPING YU, YUANAN LIU, YANGLIU LI, et al. Application of flexible electronic materials and devices. [J]. Chinese journal on internet of things, 2019, 3(3): 102-110. DOI: 10.11959/j.issn.2096-3750.2019.00125.
新型柔性电子材料与器件从提出、发现、实现到应用,在近 10 年内得到迅速发展,其强可折叠性、多能力复合结构等特性对未来信息技术发展和系统应用的影响巨大。对比了两种主流的柔性实现方式,即材料引入柔性和结构引入柔性,分析了国内外相关领域的研究进展,包括基础结构、工艺和潜在应用方向,总结了目前面临的技术难题。依据基础研究现状,未来柔性电子器件将会有成熟的应用技术创新成果,形成新的可穿戴通信、可穿戴计算、分布式能源、环境感应、共形显示设备和装置。
New flexible electronic materials and devices have been developed rapidly in nearly a decade from the proposition
discovery
implementation to application.The impact of its strong fold ability and multi-capacity composite structures to technological development and system applications will be enormous.Two mainstream flexible implementation methods were compared:the material-induced flexibility and the structure-induced flexibility.The research progress of domestic and international in related fields was analyzed
including infrastructure
process and potential application directions
and the technical problems faced were summarized.According to the basic research status
flexible electronic devices will have mature application technology innovations achievements in the next few years
new and unprecedented wearable communication
wearable computing
distributed energy
environmental sensing
conformal display devices and devices will be formed.
柔性电子可穿戴设备电子器件柔性材料
flexible electronicwearable deviceelectronic deviceflexible material
GATES B D . Flexible electronics[J]. Science, 2009,323(5921): 1566-1567.
黄维 . 柔性电子技术将带动万亿元市场[J]. 中国战略新兴产业, 2016(23):12.
HUANG W . Flexible electronic technology will drive trillion yuan market[J]. China Strategic Emerging Industry, 2016(23):12.
许巍, 卢天健 . 柔性电子系统及其力学性能[J]. 力学进展, 2008,38(2): 137-150.
XU W, LU T J . Flexible electronic system and its mechanical properties[J]. Advances in Mechanics, 2008,38(2): 137-150.
WONG W, SALLEO A . Flexible electronics:materials and applications[M]. Berlin: SpringerPress, 2009.
LI T . Deformation of thin films of electronics materials on polymer substrates[D]. Cambridge:Harvard University, 2006.
尹周平, 黄永安 . 柔性电子制造:材料、器件与工艺[M]. 北京: 科学出版社, 2016.
YIN Z P, HUANG Y A . Flexible electronic manufacturing:materials,devices and technologies[M]. Beijing: Science PressPress, 2016.
CHIECHI R, WEISS E, DICKEY M ,et al. Eutectic Gallium-indium (EGaIn):a moldable liquid metal for electrical characterization of self-assembled monolayers[J]. Angewandte Chemie, 2010,120(1): 148-150.
ROGERS J A, SOMEYA T, HUANG Y G . Materials and mechanics for stretchable electronics[J]. Science, 2010,327(5973): 1603-1607.
夏凯伦, 蹇木强, 张莹莹 . 纳米碳材料在可穿戴柔性导电材料中的应用研究进展[J]. 物理化学学报, 2016,32(10): 2427-2446.
XIA K L, JIAN M Q, ZHANG Y Y . Advances in wearable and flexible conductors based on nanocarbon materials[J]. Acta Physico-Chimica Sinica, 2016,32(10): 2427-2446.
LI R Q, GUO Y X , CHEN W ,et al. A flexible liquid-metal alloy bandpass filter[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2018,28(7):21265.
CHEN W, LI Y D, LI R Q ,et al. Bendable and stretchable microfluidic liquid metal-based filter[J]. IEEE Microwave & Wireless Components Letters, 2018(99): 1-3.
JIANG Z, WANG Y, YUAN S G ,et al. Ultrahigh-working-frequency embedded supercapacitors with 1T phase MoSe2nanosheets for system-in-package application[J]. Advanced Functional Materials, 2019,29(9):1807116.
PARK M, IM J, SHIN M ,et al. Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres[J]. Nature Nanotechnology, 2012,7(12): 803-809.
陈阳, 张梓澜, 隋志军 ,等. 氢氧化镍纳米线/三维石墨烯复合材料的制备及其电化学性能[J]. 物理化学学报, 2015,31(6): 109-116.
CHEN Y, ZHANG Z L, SUI Z J ,et al. Preparation and electrochemical performance of Ni(OH)2nanowires/three-dimensional graphene composite materials[J]. Acta Physico-Chimica Sinica, 2015,31(6): 109-116.
KIM D H, ROGERS J A . Stretchable electronics:materials strategies and devices[J]. Advanced Materials, 2008,20(24): 4887-4892.
LIAO C, ZHANG M, YAO M Y ,et al. Flexible organic electronics in biology:materials and devices[J]. Advanced Materials, 2014,27(46): 7493-7527.
JANG H, LEE W, KI M ,et al. Inorganic semiconductor nanomaterials for flexible electronics[M]. Darmstadt: Weinheim Wiley-VCH Verlag GmbH & Co.KGaAPress, 2015.
郑立荣, 仇志军, 游胤涛 ,等. 柔性大面积印刷电子新器件及其物联网应用[J]. 中国材料进展, 2014,33(3): 135-143.
ZHENG L R, QIU Z J, YOU Y T ,et al. Flexible large area printed electronics for the Internet of things applications[J]. Materials China, 2014,33(3): 135-143.
BRENT J R, SAVAJANI N, LEWIS E A ,et al. Production of few-layer phosphorene by liquid exfoliation of black phosphorus[J]. Chemical Communications, 2014,50(87): 13338-13341.
YUAN Z Z, LIU D M, TIAN N ,et al. Structure,preparation and properties of phosphorene[J]. Acta Chimica Sinica, 2016,74(6): 488-497.
BATMUNKH M, VIMALANATHAN K, WU C ,et al. Efficient production of phosphorene nanosheets via shear stress mediated exfoliation for low-temperature perovskite solar cells[J]. Small Methods, 2019,3(5):1800521.
兰中旭, 韦嘉, 俞燕蕾 . 柔性显示基板材料研究进展[J]. 华南师范大学学报(自然科学版), 2017(49):16.
LAN Z X, WEI J, YU Y L . Research progress on materials for flexible display substrate[J]. Journal of South China Normal University (Natural Science Edition), 2017(49):16.
AZIZI A, GADINSKI M R, LI Q ,et al. High-performance polymers sandwiched with chemical vapor deposited hexagonal boron nitrides as scalable high-temperature dielectric materials[J]. Advanced Materials, 2017,29(35):1701864.
HASSAN B K, NAM-JOON C, GROVES J T . Fabrication of multicomponent,spatially segregated DNA and protein-functionalized supported membrane microarray[J]. Langmuir, 2018,34(33): 9781-9788.
JIAN M Q, XIA K L, WANG Q ,et al. Flexible and highly sensitive pressure sensors based on bionic hierarchical structures[J]. Advanced Functional Materials, 2017,27(9):1606066.
SHENG W, GONG L P, SHANG Z J ,et al. Novel safeguarding tactile e-skins for monitoring human motion based on SST/PDMSAgNW-PET hybrid structures[J]. Advanced Functional Materials, 2018,28(18):1707538.
WAN Y B, QIU Z G, YING H ,et al. A highly sensitive flexible capacitive tactile sensor with sparse and high-aspect-ratio microstructures[J]. Advanced Electronic Materials, 2018,4(4):1700586.
WANG C Y, LI X, GAO E L ,et al. Wearable strain sensors:carbonized silk fabric for ultrastretchable,highly sensitive,and wearable strain sensors[J]. Advanced Materials, 2016,28(31): 6640-6648.
CANNELLA V, IZU M, JONES S . Flexible stainless-steel substrates[J]. Sid Information Display, 2005,21(6): 24-27.
KIM D H, GHAFFARI R, LU N ,et al. Flexible and stretchable electronics for biointegrated devices[J]. Annual Review of Biomedical Engineering, 2012,14(1): 113-128.
SONG J, JIANG H, HUANG Y ,et al. Mechanics of stretchable inorganic electronic materials[J]. Journal of Vacuum Science & Technology, 2009,27(5): 1107-1126.
KIM D H, XIAO J, SONG J ,et al. Stretchable,curvilinear electronics based on inorganic materials[J]. Cheminform, 2010,22(19): 2108-2124.
WANG S D, HUANG Y G, ROGERS J A . Mechanical designs for inorganic stretchable circuits in soft electronics[J]. IEEE Transactions on Components,Packaging and Manufacturing Technology, 2015,5(9): 1201-1218.
SU Y, PING X, YU K J ,et al. Stretchable electronics:in plane deformation mechanics for highly stretchable electronics[J]. Advanced Materials, 2017,29(8):1604989.
KIM D H, GHAFFARI R, LU N ,et al. Electronic sensor and actuator webs for large-areacomplex geometry cardiac mapping and therapy[J]. Proceedings of the National Academy of Sciences, 2012,109(49): 19910-19915.
ZHANG Y H, WANG S D, LI X T ,et al. Experimental and theoretical studies of serpentine microstructures bonded to prestrained elastomers for stretchable electronics[J]. Advanced Electronic Materials, 2014,24(14): 2028-2037.
ZHANG Y H, FU H R, XU S ,et al. A hierarchical computational model for stretchable interconnects with fractal-inspired designs[J]. Journal of the Mechanics and Physics of Solids, 2014(72): 115-130.
郑宁, 黄银, 赵骞 ,等. 面向柔性电子的形状记忆聚合物[J]. 中国科学:物理学力学天文学, 2016,46(4):044602.
ZHENG N, HUANG Y, ZHAO Q ,et al. Shape memory polymers for flexible electronics[J]. Scientia Sinica Physica,Mechanica &Astronomica, 2016,46(4):044602.
蔡依晨, 黄维, 董晓臣 . 可穿戴式柔性电子应变传感器[J]. 科学通报, 2017,62(7): 23-37.
CAI Y C, HUANG W, DONG X C . Wearable and flexible electronic strain sensor[J]. Chinese Science Bulletin, 2017,62(7): 23-37.
CHEN Y H, LU S Y, ZHANG S S ,et al. Skin-like biosensor system via electrochemical channels for noninvasive blood glucose monitoring[J]. Science Advances, 2017,3(12):1701629.
SONDHI K, GARRAUD N, ALABI D ,et al. Flexible screen-printed coils for wireless power transfer using low-frequency magnetic fields[J]. Journal of Micromechanics and Microengineering, 2019,29(8):084006.
HWANG B U, LEE J H, TRUNG T Q ,et al. Transparent stretchable self-powered patchable sensor platform with ultrasensitive recognition of human activities[J]. ACS Nano, 2015,9(9): 8801-8810.
XU B X, AKHTAR A, LIU Y H ,et al. An epidermal stimulation and sensing platform for sensorimotor prosthetic control,management of lower back exertion,and electrical muscle activation[J]. Advanced Materials, 2015,28(22): 4563-4563.
KIM D H, LU N, GHAFFARI R ,et al. Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy[J]. Nature Materials, 2011,10(4): 316-323.
HAMMOCK M L, CHORTOS A, TEE B C K ,et al. 25th Anniversary article:the evolution of electronic skin (e-skin):a brief history,design considerations,and recent progress[J]. Advanced Materials, 2013,25(42): 5997-6038.
冯瑞华 . 美国柔性电子技术研发政策与方向[J]. 新材料产业, 2017(5): 19-22.
FENG R H . US flexible electronic technology R&D policy and direction[J]. Advanced Materials Industry, 2017(5): 19-22.
董明睿 . 未来半导体材料在柔性显示屏技术中的创新与应用[J]. 科技与创新, 2019,123(3): 166-167.
DONG M R . Innovation and application of semiconductor materials in flexible display screen technology in the future[J]. Science and Technology & Innovation, 2019,123(3): 166-167.
BACA A J, YU K J, XIAO J L ,et al. Compact mono-crystalline silicon solar modules with high voltage output and mechanically flexible designs[J]. Energy & Environmental Science, 2010(3): 208-211.
RAMAKRISHNA M, JUHIKUMAR I, VENKANNA K ,et al. Hydrogenated amorphous silicon solar cells fabricated at low substrate temperature 110°C on flexible PET substrate[J]. AIP Conference Proceedings, 2018: 178-186.
PAGLIARO M, CIRIMINNA R, PALMISANO G . Flexible solar cells[J]. Chemsuschem, 2010,1(11): 880-891.
TSANG S W, DROLET N, TSE S C ,et al. Impact of interfacial dipole on carrier transport in bulk heterojunction poly(3-hexylthiophene) and[6,6]-phenyl C 61-butyric acid methyl ester blends[J]. Applied Physics Letters, 2010,97(15):226.
HEO J H, LEE M H, HAN H J ,et al. Highly efficient low temperature solution processable planar type CH3NH3PBI3 perovskite flexible solar cells[J]. Journal of Materials Chemistry A, 2016(4): 1572-1578.
LIU X Y, YANG X D, LIU X S ,et al. High efficiency flexible perovskite solar cells using SnO2/graphene electron selective layer and silver nanowires electrode[J]. Applied Physics Letter, 2018:203903.
兰林锋, 张鹏, 彭俊彪 . 氧化物薄膜晶体管研究进展[J]. 物理学报, 2016,65(12): 1-22.
LAN L F, ZHANG P, PENG J B . Research progress on oxide-based thin film transisitors[J]. Acta Physica Sinica, 2016,65(12): 1-22.
兰中旭, 韦嘉, 俞燕蕾 . 柔性显示基板材料研究进展[J]. 华南师范大学学报(自然科学版), 2017,49(1): 9-16.
LAN Z X, WEI J, YU Y L . Research progress on materials for flexible display substrate[J]. Journal of South China Normal University (Natural Science Edition), 2017,49(1): 9-16.
0
浏览量
1022
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构