浏览全部资源
扫码关注微信
[ "叶佳(1985- ),男,湖北仙桃人,西南交通大学副教授,主要研究方向为微波光子学、光载无线通信和无线信号感知" ]
[ "罗健威(1995- ),男,四川宜宾人,西南交通大学硕士生,主要研究方向为频率测量和矢量量化" ]
[ "郭仪(1993- ),男,湖北黄冈人,西南交通大学硕士生,主要研究方向为数字型光载无线和矢量量化" ]
[ "潘炜(1959- ),男,湖南岳阳人,西南交通大学教授、博士生导师,主要研究方向为通信与信息系统、微波光子学等" ]
纸质出版日期:2019-12-30,
网络出版日期:2019-09,
移动端阅览
叶佳, 罗健威, 郭仪, 等. 面向毫米波无线接入网的数字型光载无线技术[J]. 物联网学报, 2019,3(4):17-24.
JIA YE, JIANWEI LUO, YI GUO, et al. Digital radio over fiber transmission technique for millimeter-wave radio access network. [J]. Chinese journal on internet of things, 2019, 3(4): 17-24.
叶佳, 罗健威, 郭仪, 等. 面向毫米波无线接入网的数字型光载无线技术[J]. 物联网学报, 2019,3(4):17-24. DOI: 10.11959/j.issn.2096-3750.2019.00128.
JIA YE, JIANWEI LUO, YI GUO, et al. Digital radio over fiber transmission technique for millimeter-wave radio access network. [J]. Chinese journal on internet of things, 2019, 3(4): 17-24. DOI: 10.11959/j.issn.2096-3750.2019.00128.
随着5G空口标准将毫米波段定为无线接入网络的重要载波频段,毫米波通信成为提高移动通信系统传输性能的关键技术。首先介绍了面向毫米波无线接入网的数字型光载无线(DRoF)传输技术,然后对目前应用于 DRoF 系统中的不同量化编码算法进行了比较与总结,对系统的误差矢量幅度(EVM)、系统复杂度及频谱利用率等重要性能指标进行了分析,以期为毫米波无线接入网的构建提供参考。
As the air interface standard of 5G confirms the millimeter wave as one important frequency band for the signal carrier
millimeter-wave communication is considered as the key technique to improve the transmission performance of the mobile communication system.Firstly
the digital radio over fiber (DRoF) link in 5G application was introduced.Then
the different quantization coding algorithms applied in DRoF system were compared and summarized.In order to provide reference for the construction of millimeter-wave radio access network
the important performance indexes such as the error vector amplitude (EVM)
system complexity and spectrum utilization were analyzed.
毫米波通信无线接入网数字型光载无线移动前传
millimeter-wave communicationradio access networkdigital radio over fibermobile fronthaul
BOCCARDI F, HEATHE R, LOZANO A ,et al. Five disruptive technology directions for 5G[J]. IEEE Communications Magazine, 2014,52(2): 74-80.
张平, 陶运铮, 张治 . 5G 若干关键技术评述[J]. 通信学报, 2016,37(7): 15-29.
ZHANG P, TAO Y Z, ZHANG Z . Survey of several key technologies for 5G[J]. Journal on Communications, 2016,37(7): 15-29.
ANDREWS J G, BUZZI S, CHOI W ,et al. What will 5G be?[J]. IEEE Journal on Selected Areas in Communications, 2014,32(6): 1065-1082.
何世文, 黄永明, 王海明 ,等. 毫米波无线通信发展趋势及技术挑战[J]. 电信科学, 2017,33(6): 11-20.
HE S W, HUANG Y M, WANG H M ,et al. Development trend and technological challenges of millimeter-wave wireless communication[J]. Telecommunications Science, 2017,33(6): 11-20.
WATERHOUSE R, NOVACK D . Realizing 5G:microwave photonics for 5G mobile wireless systems[J]. IEEE Microwave Magazine, 2015,16(8): 84-92.
PI Z, KHAN F . An introduction to millimeter-wave mobile broad-band systems[J]. IEEE Communications Magazine, 2011,49(6): 101-107.
RAPPAPORT T S, SUN S, MAYZUS R ,et al. Millimeter wave mobile communications for 5G cellular:it will work![J]. IEEE Access, 2013,1(1): 335-349.
ROH W, SEOL J Y, PARK J ,et al. Millimeter-wave beamforming as an enabling technology for 5G cellular communications:theoretical feasibility and prototype results[J]. IEEE Communications Magazine, 2014,52(2): 106-113.
RANGAN S, RAPPAPORT T S, ERKIP E ,et al. Millimeter-wave cellular wire-less networks:potentials and challenges[J]. Proceedings of the IEEE, 2014,102(3): 366-385.
SKUBIC B, BOTTARI G, ROSTAMI A ,et al. Rethinking optical transport to pave the way for 5G and the networked society[J]. Journal of Lightwave Technology, 2015,33(5): 1084-1091.
CAPMANY J, NOVAK D . Microwave photonics combines two worlds[J]. Nature Photonics, 2007,1(6): 319-330.
YAO J . Microwave photonics[J]. Journal of Lightwave Technology, 2009,27(3): 314-335.
JAVIER M, JOSE C . Microwave photonics and radio-over-fiber research[J]. Journal of Lightwave Technology, 2009,10(4): 96-105.
雷秋燕, 张治中, 程方 ,等. 基于C-RAN的5G无线接入网架构[J]. 电信科学, 2015,31(1): 112-121.
LEI Q Y, ZHANG Z Z, CHENG F ,et al. 5G radio access network architecture based on C-RAN[J]. Telecommunications Science, 2015,31(1): 112-121.
BABIR M R N, CHOUDHURY P K . On the performance of high order QAM signals for analog and digital radio over fiber systems[C]// 2017 4th International Conference on Advances in Electrical Engineering (ICAEE). 2015.
LI X Y, YU J J, XU Y M ,et al. 60-Gbps W-Band 64QAM RoF system with T-spaced DD-LMS equalization[C]// 2017 Optical Fiber Communications Conference and Exhibition (OFC). 2017.
LI X Y, YU J J, XIAO J N ,et al. Field trial of 80-Gbit/s PDM-QPSK signal delivery over 300-m wireless distance with MIMO and antenna polarization multiplexing at W-band[C]// 2015 Optical Fiber Communications Conference and Exhibition (OFC). 2015.
BAKAUL M, RAZIBUL ISLAM A H M, NIRMALATHAS A ,et al. Recent progresses in gigabit wireless access using millimetre-wave RoFs[C]// 2016 IEEE 6th International Conference on Photonics (ICP). IEEE, 2016.
PHAM T A, NGUYEN N T T, VU L T ,et al. A novel hybrid fiber-wireless RoF/MMW system using bidirectional amplify-and-forward relaying[C]// 2017 International Conference on Advanced Technologies for Communications (ATC). 2017.
NIRMALATHAS A, GAMAGE P A, LIM C ,et al. Digitized radio-over-fiber technologies for converged optical wireless access network[J]. Journal of Lightwave Technology, 2010,28(16): 2366-2375.
OLIVEIRA J M B, PESSOA L M, COELHO D ,et al. Digitised radio techniques for fibre-wireless applications[C]// 2014 16th International Conference on Transparent Optical Networks (ICTON). 2014.
LIEN S Y, SHIEH S L, HUANG Y ,et al. 5G new radio:waveform,frame structure,multiple access,and initial access[J]. IEEE communications magazine, 2017,55(6): 64-71.
CHIH-LIN I, HUANG J . RAN revolution with NGFI (xHaul) for 5G[J]. Journal of Lightwave Technology, 2018,36(2): 541-550.
PFEIFFER T, . Next generation mobile fronthaul architectures[C]// Optical Fiber Communications Conference and Exhibition (OFC). 2015.
ZHANG L, PANG X D, OZOLINS O ,et al. Digital mobile fronthaul employing differential pulse code modulation with suppressed quantization noise[J]. Optics Express, 2017,5(25): 31921-31936.
LI H B, LI X, LUO M ,et al. Improving performance of differential pulse coding modulation based digital mobile fronthaul employing noise shaping[J]. Optics Express, 2018,26(9): 11407-11417.
LI H B, LUO M, LI X ,et al. Spectrally efficient digital mobile fronthaul with discrete cosine transform and multi-band quantization[J]. Optics Letters, 2018,43(20): 5130-5133.
XU M, JIA Z S, WANG J ,et al. Statistical data compression and differential coding for digital radio-over-fiber-based mobile fronthaul[J]. Journal of Optical Communications and Networking, 2019,11(1): 60-71.
ZHANG L, PANG X, OZOLINS O ,et al. Spectrally efficient digitized radio-over-fiber system with K-means clustering-based multidimensional quantization[J]. Optics Letters, 2018,43(7): 1546-1549.
YE J, GUO Y, LI P ,et al. Improving performance of digital mobile fronthaul employing 2-D vector quantization with vector linear prediction[J]. IEEE Photonics Journal, 2019,11(2):7201911.
YE J, GUO Y, YAN L S ,et al. Vector linear prediction based two-dimensional quantization for digitized radio-over-fiber system[C]// 2018 Asia Communications and Photonics Conference (ACP). 2018.
3GPP.Evolved universal terrestrial radio access (E-UTRA); base station (BS) radio transmission and reception[S]. 2014.
YE J, GUO Y, LI P ,et al. 2-D quantization scheme utilizing SOFM neural network clustering for a DRoF system[J]. Optics Letters, 2018,43(19): 4663-4666.
0
浏览量
374
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构