浏览全部资源
扫码关注微信
[ "蔡晓然(1996- ),女,广东阳江人,广东工业大学硕士生,主要研究方向为无线通信、机器学习和移动边缘计算" ]
[ "莫小鹏(1996- ),男,广东湛江人,广东工业大学硕士生,主要研究方向为无线通信、机器学习、无人机通信和移动边缘计算" ]
[ "许杰(1985- ),男,四川内江人,广东工业大学教授、博士生导师,主要研究方向为无线通信、机器学习、无线能量传输、无人机通信以及移动边缘计算" ]
纸质出版日期:2019-12-30,
网络出版日期:2019-09,
移动端阅览
蔡晓然, 莫小鹏, 许杰. 面向联合学习的D2D计算任务卸载[J]. 物联网学报, 2019,3(4):82-90.
XIAORAN CAI, XIAOPENG MO, JIE XU. D2D computation task offloading for efficient federated learning. [J]. Chinese journal on internet of things, 2019, 3(4): 82-90.
蔡晓然, 莫小鹏, 许杰. 面向联合学习的D2D计算任务卸载[J]. 物联网学报, 2019,3(4):82-90. DOI: 10.11959/j.issn.2096-3750.2019.00135.
XIAORAN CAI, XIAOPENG MO, JIE XU. D2D computation task offloading for efficient federated learning. [J]. Chinese journal on internet of things, 2019, 3(4): 82-90. DOI: 10.11959/j.issn.2096-3750.2019.00135.
联合学习是一种分布式机器学习,边缘节点的计算和通信资源受限等因素是限制其性能优化的瓶颈。当边缘节点的计算和通信能力异构时,需要对通信和计算进行联合优化。提出了一种面向联合学习的D2D计算任务卸载方案,不同边缘节点通过D2D通信交换数据样本,平衡节点的处理能力和任务负载,以最小化联合学习模型训练过程的总时延。仿真结果表明,所提出的D2D计算任务卸载方案能显著提高联合学习的模型训练速度和效率。
Federated learning is a kind of distributed machine learning technique.The factor of communication and computation resource constraints at the edge node is becoming the performance bottleneck.In particular
when different edge node has distinct computation and communication capabilities
the model training performance may degrade severely
thus necessitating the joint communication and computation optimization.To tackle this challenge
a computational task offloading scheme enabled by device-to-device (D2D) communications was proposed
in which different edge node exchanged data samples via D2D communication links to balance the processing capability and task load
in order to minimize the total time delay for machine learning model training.Simulation results show that compared to the benchmark scheme without such D2D task offloading the training speed and efficiency of federated learning has be improved significantly.
联合学习移动边缘计算任务卸载D2D通信
federated learningmobile edge computingtask offloadingdevice-to-device communication
MAO Y Y, YOU C S, ZHANG J ,et al. A survey on mobile edge computing:the communication perspective[J]. IEEE Communications Surveys & Tutorials, 2017,19(4): 2322-2358.
CAO X W, WANG F, XU J ,et al. Joint computation and communication cooperation for energy-efficient mobile edge computing[J]. IEEE Internet of Things Journal, 2019,6(3): 4188-4200.
WANG F, XU J, WANG X ,et al. Joint offloading and computing optimization in wireless powered mobile-edge computing systems[J]. IEEE Transactions on Wireless Communications, 2018,17(3): 1784-1797.
LETAIEF B K, CHEN W, SHI Y M ,et al. The roadmap to 6G:AI empowered wireless networks[J]. IEEE Communications Magazine, 2019,57(8): 84-90.
ELGAZAR A, HARRAS K, AAZAM M ,et al. Towards intelligent edge storage management:determining and predicting mobile file popularity[C]// IEEE International Conference on Mobile Cloud Computing,Services,and Engineering. IEEE, 2018.
KONECNY J, BRENDAN M, RAMAGE D ,et al. Federated machine learning:concept and applications[J]. ACM Transactions on Intelligent Systems and Technology, 2019,10(2):12.
ZHANG J L, TU H D, REN Y J ,et al. An adaptive synchronous parallel strategy for distributed machine learning[J]. IEEE Access, 2018(6): 19222-19230.
SPRAGUE M R, JALALIRAD A, SCAVUZZO M ,et al. Asynchronous federated learning for geospatial applications[C]// Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Springer, 2018.
CHEN J M, MONGA R, BENGIO S ,et al. Revisiting distributed synchronous SGD[C]// International Conference on Learning Representations Workshop Track. Arxiv, 2016.
WANG S Q, TUOR T, SALONIDIS T ,et al. Adaptive federated learning in resource constrained edge computing systems[J]. IEEE Journal on Selected Areas in Communications, 2019,37(6): 1205-1221.
WEN W, XU C, YAN F ,et al. TernGrad:ternary gradients to reduce communication in distributed deep learning[C]// Advances in Neural Information Processing Systems. IEEE, 2017.
LI X Y, ZHU G X, GONG Y ,et al. Wirelessly powered data aggregation for IoT via over-the-air function computation:beamforming and power control[J]. IEEE Transactions on Wireless Communications, 2019,18(7): 3437-3452.
HU Y C, PATEL M, SABELLA D ,et al. Mobile edge computing—a key technology towards 5G[J]. ETSI White Paper, 2015,11(11): 1-16.
XU J, CHEN L X, LIU K ,et al. Designing security-aware incentives for computation offloading via device-to-device communication[J]. IEEE Transactions on Wireless Communications, 2018,17(9): 6053-6066.
LEE S J, TCHA Y, SEO S Y ,et al. Efficient use of multicast and unicast channels for multicast service transmission[J]. IEEE Transactions on Communications, 2011,59(5): 1264-1267.
HUNGER R . Floating point operations in matrix-vector calculus[M]. Munich: Institute for Circuit Theory and Signal ProcessingPress, 2005.
LECUN Y, BOTTOU L, BENGIO Y ,et al. Gradient-based learning applied to document recognition[J]. IEEE, 1998,86(11): 2278-2324.
0
浏览量
401
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构