浏览全部资源
扫码关注微信
1. 内蒙古电力(集团)有限责任公司包头供电局,内蒙古 包头 014030
2. 内蒙古电力(集团)有限责任公司,内蒙古 呼和浩特 010010
3. 上海极熵数据科技有限公司,上海 201199
[ "杨子元(1984- ),男,内蒙古包头人,内蒙古电力(集团)有限责任公司包头供电局青山分局副局长,主要研究方向为电力营销" ]
[ "许晓斌(1973- ),男,内蒙古包头人,内蒙古电力(集团)有限责任公司市场营销部副部长,内蒙古自治区电机工程学会测试技术及仪表专业委员会副主任委员,主要研究方向为市场营销专业管理" ]
[ "李欣(1977- ),男,内蒙古包头人,内蒙古电力(集团)有限责任公司包头供电局市场营销处处长,主要研究方向为电力营销" ]
[ "赵一萌(1987- ),男,辽宁沈阳人,博士,上海极熵数据科技有限公司研究总监,主要研究方向为人工智能技术在物联网和能源互联网中的应用" ]
纸质出版日期:2019-12-30,
网络出版日期:2019-09,
移动端阅览
杨子元, 许晓斌, 李欣, 等. 基于智能感知技术的用电事件识别方法研究[J]. 物联网学报, 2019,3(4):109-115.
ZIYUAN YANG, XIAOBIN XU, XIN LI, et al. Research on appliance event detection method based on intelligent perception technology. [J]. Chinese journal on internet of things, 2019, 3(4): 109-115.
杨子元, 许晓斌, 李欣, 等. 基于智能感知技术的用电事件识别方法研究[J]. 物联网学报, 2019,3(4):109-115. DOI: 10.11959/j.issn.2096-3750.2019.00138.
ZIYUAN YANG, XIAOBIN XU, XIN LI, et al. Research on appliance event detection method based on intelligent perception technology. [J]. Chinese journal on internet of things, 2019, 3(4): 109-115. DOI: 10.11959/j.issn.2096-3750.2019.00138.
物联网和智能化技术的高速发展为用电负荷智能感知技术提供了系统支撑,也为用电行为识别提供了数据基础。为了实现对设备启停事件的精准识别,提出了利用高频率、高精度电能数据结合动态时间规整(DTW)算法的技术方案,并搭建了基于自主研发硬件的实验测试平台。实验结果表明,该用电事件识别算法具有较高的识别精确率和召回率,可以被应用于更多场景中,以实现用电负荷的全面感知。
The rapid development of Internet of things and intelligent technologies provides the system support for intelligent load perception technology of power usage
as well as provides analytical data for power user behavior.In order to realize the accurate identification of equipment start or stop events
a technical proposal which combined the high frequency and high precision power data with the dynamic time consolidation (DTW) algorithm was proposed
and an experimental testing platform based on the independent hardware was built.The experimental results show that the power incident identification algorithm has a high identification accuracy and recall rate
which can be applied in more scenarios to realize the full perception of power load.
物联网智能感知非侵入式测量动态时间规整
Internet of thingsintelligent perceptionnon-intrusive load monitoring (NILM)dynamic time warping (DTW)
杨挺, 翟峰, 赵英杰 ,等. 泛在电力物联网释义与研究展望[J]. 电力系统自动化, 2019,43(13): 9-20.
YANG T, ZHAI F, ZHAO Y J ,et al. Ubiquitous power Internet of things interpretation and research prospects[J]. Automation of Electric Power Systems, 2019,43(13): 9-20.
程祥, 李林芝, 吴浩 ,等. 非侵入式负荷监测与分解研究综述[J]. 电网技术, 2016,41(10): 3108-3117.
CHENG X, LI L Z, WU H ,et al. Review of research on non-invasive load monitoring and decomposition[J]. Power System Technology, 2016,41(10): 3108-3117.
TSAI M, LIN Y . Modern development of an adaptive non-intrusive appliance load monitoring system in electricity energy conservation[J]. Applied Energy, 2012,96: 55-73.
KOLTER J Z, JAAKKOLA T . Approximate inference in additive factorial HMMs with application to energy disaggregation[J]. Artificial Intelligence and Statistics, 2012: 1472-1482.
KELLY J, KNOTTENBELT W . Neural NILM:deep neural networks applied to energy disaggregation[C]// Proceedings of the 2nd ACM International Conference on Embedded Systems for Energy-Efficient Built Environments. ACM, 2015: 55-64.
SAKOE H, CHIBA S . Dynamic programming algorithm optimization for spoken word recognition[J]. IEEE Transaction Acoust Speech Signal Process, 1978,26(1): 43-49.
BERNDT D J, CLIFFOD J . Using dynamic time warping to nd patterns in time series[C]// KDD Workshop, 1994, 10(16): 359-370.
SALVADOR S, CHAN P . FastDTW:toward accurate dynamic time warping in linear time and space[C]// KDD Workshop. 2004: 70-80.
ZHAO J, ITTI L . ShapeDTW:shape dynamic time warping[J]. Pattern Recognition, 2018,74: 171-184.
0
浏览量
730
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构