浏览全部资源
扫码关注微信
1. 西安电子科技大学综合业务网理论及关键技术国家重点实验室,陕西 西安 710071
2. 国防科技大学信息通信学院,陕西 西安 710106
3. 萨里大学5G创新研发中心,萨里郡 吉尔福德 GU2 7XH
[ "李赞(1975- ),女,陕西西安人,西安电子科技大学教授、博士生导师,主要研究方向为隐蔽通信、频谱管控" ]
[ "廖晓闽(1984- ),女,江西德兴人,西安电子科技大学博士生,国防科技大学信息通信学院副教授,主要研究方向为频谱管控、隐蔽通信" ]
[ "石嘉(1987- ),男,陕西西安人,博士,西安电子科技大学副教授,主要研究方向为无线系统资源分配、毫米波通信、隐蔽通信等" ]
[ "肖培(1968- ),男,湖北武汉人,英国萨里大学教授、博士生导师,主要研究方向为无线通信理论与信号处理、5G通信关键技术等" ]
纸质出版日期:2020-03-30,
网络出版日期:2020-03,
移动端阅览
李赞, 廖晓闽, 石嘉, 等. 面向认知物联网的隐蔽通信智能功率控制[J]. 物联网学报, 2020,4(1):52-58.
ZAN LI, XIAOMIN LIAO, JIA SHI, et al. Intelligent power control for covert communication in cognitive Internet of things. [J]. Chinese journal on internet of things, 2020, 4(1): 52-58.
李赞, 廖晓闽, 石嘉, 等. 面向认知物联网的隐蔽通信智能功率控制[J]. 物联网学报, 2020,4(1):52-58. DOI: 10.11959/j.issn.2096-3750.2020.00148.
ZAN LI, XIAOMIN LIAO, JIA SHI, et al. Intelligent power control for covert communication in cognitive Internet of things. [J]. Chinese journal on internet of things, 2020, 4(1): 52-58. DOI: 10.11959/j.issn.2096-3750.2020.00148.
针对认知物联网的安全问题,提出了一种基于生成对抗网络的认知物联网隐蔽通信智能功率控制算法。首先将认知物联网隐蔽通信问题转化为认知物联网用户和窃听者之间的动态博弈问题,然后利用生成器模仿认知物联网用户,利用鉴别器模仿窃听者,两者分别采用3层神经网络构建,并通过二人零和博弈实现学习优化过程,最终达到纳什均衡,获得隐蔽功率控制方案。仿真结果表明,所提出的算法收敛速度快,不仅可以获得近似最优的隐蔽功率控制方案,而且在未来认知物联网中更具有实用性。
In order to solve the security problem of cognitive Internet of things (IoT)
an intelligent power control algorithm of covert communication in cognitive IoT based on generative adversarial network was proposed.Firstly
the covert communication optimization problem in the cognitive IoT was transformed into a dynamic game between the cognitive IoT user and the eavesdropper.Then
the generator imitated the cognitive IoT user
while the discriminator imitated the eavesdropper.The generator and the discriminator were constructed by the three-layer neural network respectively.Through the two-person zero-sum game
the learning optimization process was realized to achieve the Nash equilibrium
and finally the covert power control scheme was obtained.The simulation results show that the proposed algorithm can not only obtain near-optimal covert power control scheme with rapid convergence ability
but also be more practical in the future cognitive IoT.
认知物联网隐蔽通信生成对抗网络功率控制
cognitive IoTcovert communicationgenerative adversarial networkpower control
JUNTTI M, KANTOLA R, KYÖSTI P ,et al. Key drivers and research challenges for 6G ubiquitous wireless intelligence[R]. Finland:University of Oulu, 2019.
WU Q H, QING G R, XU Y H ,et al. Cognitive Internet of things:a new paradigm beyond connection[J]. IEEE Internet of Things Journal, 2014,1(2): 129-143.
ZHU J, SONG Y H, JIANG D D ,et al. A new deep-Q-learning-based transmission scheduling mechanism for the cognitive Internet of things[J]. IEEE Internet of Things Journal, 2018,5(4): 2375-2385.
ZHU Z, YU B, CHU X ,et al. Design and optimization of physical layer security transmission scheme in random cognitive Internet of things[C]// 2019 11th International Conference on Wireless Communications and Signal Processing (WCSP). IEEE, 2019: 2325-3746.
DENG Z, LI Q, ZHANG Q ,et al. Beamforming design for physical layer security in a two-way cognitive radio IoT network with SWIPT[J]. IEEE Internet of Things Journal, 2019,6(6): 10786-10798.
BANY H A, ALMAJALI S, AYYASH M ,et al. Spectrum assignment in cognitive radio networks for Internet of things delay-sensitive applications under jamming attacks[J]. IEEE Internet of Things Journal, 2018,5(3): 1904-1913.
SOLTANI R, GOECKEL D, TOWSLEY D ,et al. Covert wireless communication with artificial noise generation[J]. IEEE Transactions on Wireless Communications, 2018,17(11): 7252-7267.
BASH B A, GOECKEL D, TOWSLEY D . Limits of reliable communication with low probability of detection on AWGN channels[J]. IEEE Journal on Selected Areas in Communications, 2013,31(9): 1921-1930.
WANG J Q, TANG W B, ZHU Q Q ,et al. Covert communication with the help of relay and channel uncertainty[J]. IEEE Wireless Communications Letters, 2019,8(1): 317-320.
LIU Z, LIU J, ZENG Y ,et al. On covert communication with interference uncertainty[C]// 2018 IEEE International Conference on Communications (ICC). IEEE, 2018: 1-6.
HE B, YAN S H, ZHOU X Y ,et al. Covert wireless communication with a Poisson field of interferers[J]. IEEE Transactions on Wireless Communications, 2018,17(9): 6005-6017.
MENG R H, CUI Q, ZHOU Z L ,et al. A steganography algorithm based on CycleGAN for covert communication in the Internet of things[J]. IEEE Access, 2019,7: 90574-90584.
LI F Y, SHINDE A, SHI Y ,et al. System statistics learning-based IoT security:feasibility and suitability[J]. IEEE Internet of Things Journal, 2019,6(4): 6396-6403.
ROOPAK M, TIAN G Y, CHAMBERS J . Deep learning models for cyber security in IoT networks[C]// 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC). IEEE, 2019: 452-457.
HU J S, YAN S H, SHU F ,et al. Covert transmission with a self-sustained relay[J]. IEEE Transactions on Wireless Communications, 2019,18(8): 4089-4102.
SHI X, WU D, YUE C ,et al. Resource allocation for covert communication in D2D content sharing:a matching game approach[J]. IEEE Access, 2019,7: 72835-72849.
HAGAN M T, DEMUTH H B, BEALE M H ,et al. Neural network design (2nd Edition)[M]. USA: Martin HaganPress, 2014.
0
浏览量
599
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构