浏览全部资源
扫码关注微信
[ "田飞燕(1997- ),女,山西晋城人,浙江大学信息与电子工程学院信息与通信工程系在读博士生,主要研究方向为蜂窝物联网、大规模接入和稀疏信号处理等" ]
[ "陈晓明(1982- ),男,江苏苏州人,浙江大学信息与电子工程学院信息与通信工程系研究员、博士生导师,主要研究方向为5G/6G关键技术、物联网理论与技术和智能无线通信" ]
[ "钟财军(1982- ),男,浙江绍兴人,浙江大学信息与电子工程学院信息与通信工程系教授、博士生导师,主要研究方向为无线通信、通信信号处理以及人工智能在无线通信系统中的应用" ]
[ "张朝阳(1973- ),男,湖北黄冈人,浙江大学信息与电子工程学院信息与通信工程系教授、博士生导师,主要研究方向为新一代无线通信与智能网络、感知—通信—计算协同融合、网络信息论与新型编译码和分布式感知、学习与优化" ]
纸质出版日期:2020-03-30,
网络出版日期:2020-03,
移动端阅览
田飞燕, 陈晓明, 钟财军, 等. 6G蜂窝物联网的大规模接入技术[J]. 物联网学报, 2020,4(1):92-103.
FEIYAN TIAN, XIAOMING CHEN, CAIJUN ZHONG, et al. Massive access technology in 6G cellular Internet of things network. [J]. Chinese journal on internet of things, 2020, 4(1): 92-103.
田飞燕, 陈晓明, 钟财军, 等. 6G蜂窝物联网的大规模接入技术[J]. 物联网学报, 2020,4(1):92-103. DOI: 10.11959/j.issn.2096-3750.2020.00151.
FEIYAN TIAN, XIAOMING CHEN, CAIJUN ZHONG, et al. Massive access technology in 6G cellular Internet of things network. [J]. Chinese journal on internet of things, 2020, 4(1): 92-103. DOI: 10.11959/j.issn.2096-3750.2020.00151.
为了实现万物互联,6G蜂窝物联网需要提供低功耗、巨连接和广覆盖的无线接入。通过对6G物联网中大规模接入技术的分析和研究,特别是结合物联网业务的偶发特性,设计了一个基于免授权随机接入协议的新型接入架构,以促进在有限频谱资源内实现高效的大规模接入。所提接入架构包括两个阶段,即联合激活检测与信道估计、数据传输。根据数据传输方向的不同,可以分为上行数据传输和下行数据传输两种方案。由于大规模免授权随机接入情况下基站获取的信道信息具有不确定性,同时考虑6G物联网设备的低功耗需求,因此,两种方案都以系统能量效率为优化目标,分别设计了稳健的接入算法。仿真结果证明了所提方案的有效性和稳健性。
To realize Internet of everything (IoE)
the 6G cellular Internet of things (IoT) network need to provide wireless access with low power
massive connectivity and wide coverage.Through the analysis and research on the massive access technology in 6G cellular IoT network
especially in combination with the sporadic characteristics of IoT applications
a new access framework based on the grant-free random access protocol was designed to facilitate efficient massive access with limited spectrum resources.The proposed framework consisted of two phases.One was joint activity detection and channel estimation.The other was data transmission
which was divided into two categories
uplink data transmission and downlink data transmission
according to the different directions of data transmission.Due to the uncertainty of channel state information at the base station under the massive grant-free random access and considering the low power demand of 6G IoT devices
two robust uplink and downlink access algorithms were designed by maximizing the system energy efficiency.Extensive simulation results validate the effectiveness and robustness of the proposed algorithm.
6G蜂窝物联网大规模接入能量效率低功耗巨连接广覆盖
6Gcellular Internet of thingsmassive accessenergy efficiencylow powermassive connectivitywide coverage
赵亚军, 郁光辉, 徐汉青 . 6G移动通信网络:愿景、挑战与关键技术[J]. 中国科学:信息科学, 2019,49(8): 963-987.
ZHAO Y J, YU G H, XU H Q . 6G mobile communication networks:vision,challenge,and key technologies[J]. Scientia Sinica (Informationis), 2019,49(8): 963-987.
CHEN X M, ZHANG Z Y, ZHONG C J ,et al. Fully non-orthogonal communication for massive access[J]. IEEE Transactions on Communications, 2018,66(4): 1717-1731.
CHEN X M, ZHANG Z Y, ZHONG C J ,et al. Exploiting multiple-antenna techniques for non-orthogonal multiple access[J]. IEEE Journal on Selected Areas in Communications, 2017,35(10): 2207-2220.
TIAN F Y, CHEN X M . Multiple-antenna techniques in nonorthogonal multiple access:a review[J]. Frontiers of Information Technology &Electronic Engineering, 2019,20(12): 1665-1697.
CHEN X M, CHEN H H, MENG W X . Cooperative communications for cognitive radio networks—from theory to applications[J]. IEEE Communications Surveys & Tutorials, 2014,16(3): 1180-1193.
LYU L, CHEN J, NI Q . Cooperative non-orthogonal multiple access in cognitive radio[J]. IEEE Communications Letters, 2016,20(10): 2059-2062.
CHEN X M, WANG X M, CHEN X F . Energy-efficient optimization for wireless information and power transfer in large-scale MIMO systems employing energy beamforming[J]. IEEE Wireless Communications Letters, 2013,2(6): 667-670.
CHEN X M, YUEN C, ZHANG Z Y . Wireless energy and information transfer tradeoff for limited feedback multi-antenna systems with energy beamforming[J]. IEEE Transactions on Vehicular Technology, 2014,63(1): 407-412.
CHEN X M, ZHANG Z Y, CHEN H H ,et al. Enhancing wireless information and power transfer by exploiting multi-antenna techniques[J]. IEEE Communications Magazine, 2015,53(4): 133-141.
CHEN X M, NG D W K, CHEN H H . Secrecy wireless information and power transfer:challenges and opportunities[J]. IEEE Wireless Communications, 2016,23(2): 54-61.
黄欣荣 . 改变未来世界的6G网络新技术[J]. 新疆师范大学学报(哲学社会科学版), 2019
HUANG X R . 6G network new technology changing the future world[J]. Journal of Xinjiang Normal University (Edition of Philosophy and Social Sciences), 2019
张小飞, 徐大专 . 6G移动通信系统:需求、挑战和关键技术[J]. 新疆师范大学学报(哲学社会科学版), 2019
ZHANG X F, XU D Z . The 6th generation mobile communication systems:requirement,challenge,and key technology[J]. Journal of Xinjiang Normal University (Edition of Philosophy and Social Sciences), 2019
PALATTELLA M R, DOHLER M, GRIECO A ,et al. Internet of things in the 5G era:enablers,architecture,and business models[J]. IEEE Journal on Selected Areas in Communications, 2016,34(3): 510-527.
DU Y, CHENG C, DONG B ,et al. Block-sparsity-based multiuser detection for uplink grant-free NOMA[J]. IEEE Transactions on Wireless Communications, 2017,17(12): 7894-7909.
SENEL K, LARSSON E G . Grant-free massive MTC-enabled massive MIMO:a compressive sensing approach[J]. IEEE Transactions Communications, 2018,66(12): 6164-6175.
WANG B, DAI L, ZHANG Y ,et al. Dynamic compressive sensing-based multi-user detection for uplink grant-free NOMA[J]. IEEE Communications Letters, 2016,20(11): 2320-2323.
DU Y, DONG B, ZHU W ,et al. Joint channel estimation and multiuser detection for uplink grant-free NOMA[J]. IEEE Wireless Communications Letters, 2018,7(4): 682-685.
LIU L, YU W . Massive connectivity with massive MIMO-part 1:device activity detection and channel estimation[J]. IEEE Transactions on Signal Processing, 2018,66(11): 2933-2946.
SHAO X D, CHEN X M, ZHONG C J ,et al. A unified design of massive access for cellular Internet of things[J]. IEEE Internet of Things Journal, 2019,6(2): 3934-3947.
CHEN Z, SOHRABI F, YU W . Sparse activity detection for massive connectivity[J]. IEEE Transactions on Signal Processing, 2018,66(7): 1890-1904.
WANG J, PALOMAR D P . Worst-case robust MIMO transmission with imperfect channel knowledge[J]. IEEE Transactions on Signal Processing, 2009,57(8): 3086-3100.
CUI M, HU B, TANG J . Energy-efficient joint power allocation in uplink massive MIMO cognitive radio networks with imperfect CSI[J]. IEEE Access, 2017,5: 27611-27621.
FRITZSCHE R, FETTWEIS G P . Robust sum rate maximization in the multi-cell MU-MIMO downlink[C]// IEEE Wireless Communication and Networking Conference (WCNC). IEEE, 2013: 3180-3184.
EDLER T, LUNDBERG S . Energy efficiency enhancements in radio access networks[J]. Ericsson Review, 2004,81(1): 42-51.
GUO K, GUO Y, FODOR G ,et al. Uplink power control with MMSE receiver in multi-cell MU-massive-MIMO systems[C]// IEEE International Communication Conference (ICC). IEEE, 2014: 5184-5190.
GE X, HUANG X . Energy-efficient optimization for MIMO-OFDM mobile multimedia communication systems with QoS constraints[J]. IEEE Transactions Vehicular Technology, 2014,63(5): 2127-2138.
MIAO G . Energy-efficient uplink multi-user MIMO[J]. IEEE Transactions on Wireless Communications, 2013,12(5): 2302-2313.
ZARAKOVITIS C C, NI Q, SPILIOTIS J . Energy-efficient green wireless communication systems with imperfect CSI and data outage[J]. IEEE Journal on Selected Areas in Communications, 2016,34(12): 3108-3126.
ZAPPONE A, JORSWIECK E . Energy efficiency in wireless networks via fractional programming theory[J]. Foundations and Trends in Communications and Information Theory, 2015,11(3-4): 185-396.
BOYD S, VANDENBERGHE L . Convex optimization[M]. England: Cambridge University PressPress, 2004.
PAPANDRIOPOULOS J, EVANS J . Low-complexity distributed algorithms for spectrum balancing in multi-user DSL networks[C]// IEEE ICC. IEEE, 2006: 3270-3275.
XU W, WANG X, ALSHOMRAN I . SINR-constrained power minimization in MISO interference channel with imperfect CSI:a Bernstein approximation approach[C]// IEEE Globecom. IEEE, 2013.
CHEN X M, JIA R D, NG D W K . On the design of massive non-orthogonal multiple access with imperfect successive interference cancellation[J]. IEEE Transactions on Communications, 2019,67(3): 2539-2551.
TANG J, SO D K C, ALSUSA E ,et al. Resource efficiency:a new paradigm on energy efficiency and spectral efficiency tradeoff[J]. IEEE Transactions on Wireless Communications, 2014,13(8): 4656-4669.
ZHANG H, JIANG C, BEAULIEU N C . Resource allocation in spectrum-sharing OPDMA femtocells with heterogeneous services[J]. IEEE Transactions on Communications, 2014,62(7): 2366-2377.
BERTSEKAS D P . Nonlinear programming[M]. 2nd edition. Massachusetts: Athena ScientificPress, 1999.
SHI Q, RAZAVIYAYN M, LUO Z Q ,et al. An iteratively weighted MMSE approach to distributed sum-utility maximization for a MIMO interfering broadcast channel[J]. IEEE Transactions on Signal Processing, 2011,59(9): 4331-4340.
YE Y . Interior point algorithms:theory and analysis[M]. America: John Wiley and SonsPress, 1997.
CHEN X M, NG D W K, YU W ,et al. Massive access for 5G and beyond[J]. IEEE Journal on Selected Areas in Communications, 2020
0
浏览量
896
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构