浏览全部资源
扫码关注微信
1. 北京邮电大学,北京 100876
2. 先进信息网络北京实验室,北京 100876
[ "郭彩丽(1977- ),女,山西长治人,博士,北京邮电大学教授,主要研究方向为认知无线电、车联网、视觉智能计算等" ]
[ "陈九九(1994- ),男,湖南岳阳人,北京邮电大学博士生,主要研究方向为车联网、通信与计算资源联合优化等" ]
[ "宣一荻(1995- ),女,天津人,北京邮电大学硕士生,主要研究方向为认知无线电、频谱共享等" ]
[ "张荷(1995- ),女,山东淄博人,北京邮电大学硕士生,主要研究方向为认知无线电、频谱感知等" ]
纸质出版日期:2020-09-30,
网络出版日期:2020-09,
移动端阅览
郭彩丽, 陈九九, 宣一荻, 等. 动态时空数据驱动的认知车联网频谱感知与共享技术研究[J]. 物联网学报, 2020,4(3):96-105.
CAILI GUO, JIUJIU CHEN, YIDI XUAN, et al. Research on the spectrum sensing and sharing technology in the dynamic spatiotemporal data driven cognitive Internet of vehicles. [J]. Chinese journal on internet of things, 2020, 4(3): 96-105.
郭彩丽, 陈九九, 宣一荻, 等. 动态时空数据驱动的认知车联网频谱感知与共享技术研究[J]. 物联网学报, 2020,4(3):96-105. DOI: 10.11959/j.issn.2096-3750.2020.00178.
CAILI GUO, JIUJIU CHEN, YIDI XUAN, et al. Research on the spectrum sensing and sharing technology in the dynamic spatiotemporal data driven cognitive Internet of vehicles. [J]. Chinese journal on internet of things, 2020, 4(3): 96-105. DOI: 10.11959/j.issn.2096-3750.2020.00178.
随着全球汽车产业智能化和网联化的爆发式发展,作为车联网重要支撑的通信技术面临着频谱资源紧缺的难题。除了提供安全服务以外,车联网服务需求的多样性使得引入认知无线电技术成为有效的解决途径,可以实现与授权用户共享sub-6 GHz和毫米波的异质频谱资源,但车联网复杂动态变化环境的影响使得频谱利用率性能的提升受限。提出了充分利用潜在的多源动态时空数据挖掘和学习车辆轨迹、交通流的变化规律的方法,并利用其规律指导频谱的感知和共享。通过搭建系统级仿真平台进行仿真分析,结果表明所提方案的频谱效率得到有效提升。
With the explosive development of the intellectualization and network connection of the global automobile industry
the communication technology as a crucial support of the Internet of vehicles (IoV) is facing the problem of spectrum shortage.In addition to providing security services
the diverse service demands of the IoV make the introduction of the cognitive radio technology an effective solution
which can share heterogeneous spectrum resources integrating the sub-6 GHz and millimeter-wave spectrum resources with primary users.But the performance is limited due to the influence of the complex dynamic environment of the IoV.To address this issue
a novelty method was proposed which aimed to make full use of the potential multi-source dynamic spatiotemporal data
mine and learn the changing rules of the vehicle trajectory and traffic flow
and the rules were used to guide the sensing and sharing of the spectrum resource.The system-level simulation platform was built for simulation analysis
the results showed that the performance of the proposed scheme was effectively improved.
车联网动态时空数据异质频谱共享多服务的服务质量要求
Internet of vehiclesdynamic spatiotemporal dataheterogeneous spectrum sharingmulti-service quality of service requirement
中国汽车工程学会.合作式智能运输系统车用通信系统应用层及应用数据交互标准[S]. 2018.
China Society of Automotive Engineering. Cooperative intelligent transportation system,vehicular communication,application layer specification and data exchange standard[S]. 2018.
TIAN D X, ZHOU J S, WANG Y P ,et al. Channel access optimization with adaptive congestion pricing for cognitive vehicular networks:an evolutionary game approach[J]. IEEE Transactions on Mobile Computing, 2020,19(4): 803-820.
SALEEM M A, ZHOU S J, SHARIF A ,et al. Expansion of cluster head stability using fuzzy in cognitive radio CR-VANET[J]. IEEE Access, 2019,7: 173185-173195.
QIAN Y F, CHEN M, CHEN J ,et al. Secure enforcement in cognitive Internet of vehicles[J]. IEEE Internet of Things Journal, 2018,5(2): 1242-1250.
EZE J, ZHANG S J, LIU E J ,et al. Cognitive radio-enabled Internet of vehicles:a cooperative spectrum sensing and allocation for vehicular communication[J]. IET Networks, 2018,7(4): 190-199.
CHOI J, VA V, GONZALEZ-PRELCIC N ,et al. Millimeter-wave vehicular communication to support massive automotive sensing[J]. IEEE Communications Magazine, 2016,54(12): 160-167.
KONG L H, KHAN M K, WU F ,et al. Millimeter-wave wireless communications for IoT-cloud supported autonomous vehicles:overview,design,and challenges[J]. IEEE Communications Magazine, 2017,55(1): 62-68.
WANG Y F, ZHANG Z Y, LI H S . Universal quickest sensing of spectrum change in millimeter wave communications:a data driven approach[C]// 2017 IEEE Global Communications Conference (GLOBECOM). IEEE, 2017: 1-6.
LI L, HE X D, LI H S . Learning the spectrum using collaborative filtering in directional millimeter wave networks[C]// 2017 IEEE Global Communications Conference (GLOBECOM). IEEE, 2017: 1-7.
LU L, ZHOU X W, LI G Y . Optimal sequential detection in cognitive radio networks[C]// 2012 IEEE Wireless Communications and Networking Conference (WCNC). IEEE, 2012.
ZHOU H B, CHENG N, YU Q ,et al. Toward multi-radio vehicular data piping for dynamic DSRC/TVWS spectrum sharing[J]. IEEE Journal on Selected Areas in Communications, 2016,34(10):25752588.
WU C, YOSHINAGA T, JI Y S . Cooperative content delivery in vehicular networks with integration of sub-6 GHz and mmWave[C]// 2017 IEEE Globecom Workshops (GC Wkshps). IEEE, 2017: 1-6.
DENG J Q, TIRKKONEN O, FREIJ-HOLLANTI R ,et al. Resource allocation and interference management for opportunistic relaying in integrated mmWave/sub-6 GHz 5G networks[J]. IEEE Communications Magazine, 2017,55(6): 94-101.
LIM J H, NAITO K, YUN J H ,et al. Reliable safety message dissemination in NLOS intersections using TV white spectrum[J]. IEEE Transactions on Mobile Computing, 2018,17(1): 169-182.
ZHOU H B, CHENG N, LU N ,et al. WhiteFi infostation:engineering vehicular media streaming with geolocation database[J]. IEEE Journal on Selected Areas in Communications, 2016,34(8): 2260-2274.
XU Z N, GAN M M, ZEMEN T . Cluster-based non-stationary vehicular channel model[C]// 2016 10th European Conference on Antennas and Propagation (EuCAP). IEEE, 2016: 1-6.
WANG Y F, ZHANG Z Y, LI H S . Universal quickest sensing of spectrum change in millimeter wave communications:a data driven approach[C]// 2017 IEEE Global Communications Conference (GLOBECOM). IEEE, 2017: 1-6.
MICHELUSI N, NOKLEBY M, MITRA U ,et al. Multi-scale spectrum sensing in small-cell mm-wave cognitive wireless networks[C]// 2017 IEEE International Conference on Communications (ICC). IEEE, 2017: 1-6.
ZHANG H, GUO C L . Beam alignment-based mmwave spectrum sensing in cognitive vehicular networks[C]// GlobalSIP 2019. IEEE, 2019: 1-6.
XUAN Y D, GUO C L, FENG C Y ,et al. Multi-graph based spectrum sharing scheme in vehicular network with integration of heterogenous spectrum[C]// 2019 IEEE International Conference on Communications Workshops (ICC Workshops). IEEE, 2019: 1-6.
宣一荻 . 认知车联网中的异质频谱共享技术研究[D]. 北京:北京邮电大学, 2020.
XUAN Y D . Research on heterogeneous spectrum sharing technologyin cognitive vehicular networks[D]. Beijing:Beijing University of Posts and Telecommunications, 2020.
LIANG L, LI G, XU W . Resource allocation for D2D-enabled vehicular communications[J]. IEEE Transactions on Communications, 2017,65(7): 3186-3197.
SUN P, ALJERI N, BOUKERCHE A . Machine learning-based models for real-time traffic flow prediction in vehicular networks[J]. IEEE Network, 2020,34(3): 178-185.
DUAN Z T, YANG Y, ZHANG K ,et al. Improved deep hybrid networks for urban traffic flow prediction using trajectory data[J]. IEEE Access, 2018,6: 31820-31827.
KHAN A, SUN L, IFEACHOR E . QoE prediction model and its application in video quality adaptation over UMTS networks[J]. IEEE Transactions on Multimedia, 2012,14(2): 431-442.
0
浏览量
971
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构