浏览全部资源
扫码关注微信
1. 徐州工程学院信息工程学院(大数据学院),江苏 徐州 221000
2. 中国矿业大学物联网(感知矿山)研究中心,江苏 徐州 221000
3. 中国矿业大学电气与动力工程学院,江苏 徐州 221000
4. 山东能源淄博矿业集团有限公司信息中心,山东 淄博 225100
[ "张雷(1987- ),男,江苏徐州人,博士,徐州工程学院讲师,主要研究方向为井下人员定位和行为识别" ]
[ "张跃(1996- ),男,江苏徐州人,中国矿业大学物联网(感知矿山)研究中心工程师,主要研究方向为无线网络感知和机器学习等" ]
[ "李明雪(1996- ),女,江苏徐州人,中国矿业大学电气与动力工程学院硕士生,主要研究方向为电力电子变换器及其控制系统等" ]
[ "史新国(1972- ),男,山东泰安人,山东能源淄博矿业集团有限公司信息中心高级工程师,主要研究方向为煤矿信息化" ]
[ "翟勃(1970- ),男,山东淄博人,山东能源淄博矿业集团有限公司信息中心高级工程师,主要研究方向为煤矿信息化" ]
[ "王卫龙(1988- ),男,陕西商洛人,山东能源淄博矿业集团有限公司信息中心工程师,主要研究方向为煤矿信息化" ]
纸质出版日期:2020-12-30,
网络出版日期:2020-12,
移动端阅览
张雷, 张跃, 李明雪, 等. 基于CSI的井下人员行为识别方法[J]. 物联网学报, 2020,4(4):26-31.
LEI ZHANG, YUE ZHANG, MINGXUE LI, et al. CSI-based underground personnel behavior identification method. [J]. Chinese journal on internet of things, 2020, 4(4): 26-31.
张雷, 张跃, 李明雪, 等. 基于CSI的井下人员行为识别方法[J]. 物联网学报, 2020,4(4):26-31. DOI: 10.11959/j.issn.2096-3750.2020.00202.
LEI ZHANG, YUE ZHANG, MINGXUE LI, et al. CSI-based underground personnel behavior identification method. [J]. Chinese journal on internet of things, 2020, 4(4): 26-31. DOI: 10.11959/j.issn.2096-3750.2020.00202.
为了解决井下粉尘环境和遮挡条件下的人员行为识别问题,促进煤矿安全生产,提出了一种基于 Wi-Fi信道状态信息(CSI
channel state information)的井下人员行为识别方法。该方法采用Hampel滤波结合中位数滤波处理CSI原始数据,并通过线性校正方法利用相位信息。行为识别过程分为离线和在线两个阶段,离线阶段通过采集人员的不同活动信息来建立判识模型,在线阶段根据判识模型识别当前动作。在实验中设置了8个不同的人员活动,实验结果表明,该系统的识别准确率可达95%。
To solve the problem of personnel behavior identification under the condition of dust environment and shielding and to promote the coal mine safety production
a personnel identification method based on the Wi-Fi channel state information (CSI) was proposed.The system used Hampel filter and median filter to process the raw CSI data
and utilized the phase information through a linear correction method.The recognition process was divided into the offline stage and online stage.In the offline stage
different activities data was collected to establish the recognition model.While in the online stage
current actions were recognized according to the recognition model.8 different human activities were set in the experiments and the result indicated that the recognition accuracy of this system could reach 95%.
煤矿安全信道状态信息井下人员行为识别Wi-Fi主成分分析
coal mine safetychannel state informationunderground personnel behavior identificationWi-Fiprincipal component analysis
GU Y, QUAN L H, REN F J . WiFi-assisted human activity recognition[C]// 2014 IEEE Asia Pacific Conference on Wireless and Mobile. IEEE, 2014: 60-65.
ABDELNASSER H, HARRAS K A, YOUSSEF M . WiGest demo:a ubiquitous WiFi-based gesture recognition system[C]// 2015 IEEE Conference on Computer Communications Workshops (INFOCOMWKSHPS). IEEE, 2015: 17-18.
YANG Z, ZHOU Z M, LIU Y H . From RSSI to CSI:indoor localization via channel response[J]. ACM Computing Surveys, 2013,46(2): 1-32.
WANG Y X, WU K S, NI L M . WiFall:device-free fall detection by wireless networks[J]. IEEE Transactions on Mobile Computing, 2017,16(2): 581-594.
ARSHAD S, FENG C H, LIU Y H ,et al. Wi-chase:a WiFi based human activity recognition system for sensorless environments[C]// 2017 IEEE 18th International Symposium on A World of Wireless,Mobile and Multimedia Networks (WoWMoM). IEEE, 2017: 1-6.
HALPERIN D, HU W J, SHETH A ,et al. 802.11 with multiple antennas for dummies[J]. ACM SIGCOMM Computer Communication Review, 2010,40(1): 19-25.
QIAN K, WU C S, YANG Z ,et al. PADS:Passive detection of moving targets with dynamic speed using PHY layer information[C]// 2014 20th IEEE International Conference on Parallel and Distributed Systems (ICPADS). IEEE, 2014: 1-8.
SEN S, RADUNOVIC B, CHOUDHURY R R ,et al. You are facing the Mona Lisa[C]// The 10th International Conference on Mobile Systems,Applications,and Services. ACM, 2012: 183-196.
DAVIES L, GATHER U . The identification of multiple outliers[J]. Journal of the American Statistical Association, 1993,88(423): 782-792.
0
浏览量
545
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构