浏览全部资源
扫码关注微信
[ "赵小强(1977- ),男,博士,西安邮电大学教授,主要研究方向为物联网技术及应用" ]
[ "杨帆(1994- ),男,西安邮电大学硕士生,主要研究方向为物联网技术及应用" ]
[ "晏珠峰(1995- ),男,西安邮电大学硕士生,主要研究方向为物联网技术及应用" ]
纸质出版日期:2021-03-30,
网络出版日期:2021-03,
移动端阅览
赵小强, 杨帆, 晏珠峰. 基于改进樽海鞘群寻优SVM的土壤含水量预测算法[J]. 物联网学报, 2021,5(1):99-107.
XIAOQIANG ZHAO, FAN YANG, ZHUFENG YAN. Prediction method of soil water content based on SVM optimized by improved salp swarm algorithm. [J]. Chinese journal on internet of things, 2021, 5(1): 99-107.
赵小强, 杨帆, 晏珠峰. 基于改进樽海鞘群寻优SVM的土壤含水量预测算法[J]. 物联网学报, 2021,5(1):99-107. DOI: 10.11959/j.issn.2096-3750.2021.00192.
XIAOQIANG ZHAO, FAN YANG, ZHUFENG YAN. Prediction method of soil water content based on SVM optimized by improved salp swarm algorithm. [J]. Chinese journal on internet of things, 2021, 5(1): 99-107. DOI: 10.11959/j.issn.2096-3750.2021.00192.
针对传统土壤含水量预测算法存在的精度和效率较低等问题,采用支持向量机(SVM
support vector machine)建立预测模型,提出一种改进樽海鞘群算法(SSA
salp swarm algorithm)优化SVM的土壤含水量预测算法。首先,引入反向学习和混沌优化对标准樽海鞘群算法进行改进,解决算法易陷入局部最优解和收敛速度慢的问题;其次,利用改进的樽海鞘群算法对影响 SVM 性能的参数进行优化,构建对应的预测模型;最后,将所提模型与粒子群优化SVM预测模型、鲸鱼算法优化SVM预测模型进行对比。实验结果表明,所提模型的均方误差和决定系数分别为0.42和0.901,与其他两种模型相比性能更优,验证了所提算法的有效性。
Aiming at the problems of low accuracy and low efficiency of traditional soil water content prediction methods
support vector machine (SVM) was used to establish a prediction model
and the soil water content prediction method based on SVM optimized was proposed by the improved salp swarm algorithm.Firstly
the opposition-based learning and chaotic optimization were introduced to improve the standard salp swarm algorithm to solve the problem that the algorithm was easy to fall into the local optimal solution and its convergence speed was slow.Secondly
the improved salp swarm algorithm was used to optimize the parameters that affect the performance of SVM and the corresponding prediction model was built.Finally
the proposed model was compared with the particle swarm optimization SVM and the whale algorithm optimized SVM prediction model.The experimental results show that the mean square error and decision coefficient of the proposed model are 0.42 and 0.901
which are better than the other two models which verified the effectiveness of the proposed method.
土壤含水量预测支持向量机樽海鞘群算法反向学习混沌优化
soil water content predictionsupport vector machinesalp swarm algorithmopposition-based learningchaotic optimization
QIU J X, GAO Q Z, WANG S ,et al. Comparison of temporal trends from multiple soil moisture data sets and precipitation:the implication of irrigation on regional soil moisture trend[J]. International Journal of Applied Earth Observation and Geoinformation, 2016,48(5): 17-27.
王露娇 . 基于神经网络的茶园土壤墒情预测方法研究[D]. 合肥:安徽农业大学, 2018.
WANG L J . Study on the prediction method of soil moisture in tea garden based on neural network[D]. Hefei:Anhui Agricultural University, 2018.
LEWIN J . Simple soil water simulation model for assessing the irrigation requirements of wheat[J]. Israel Journal of Agricultrical Research, 1972,22(4): 201-213.
王玮 . 黄河干流灌区土壤墒情动态预测与用水需求模型研究[D]. 西安:西安理工大学, 2019.
WANG W . Study on dynamic prediction of soil moisture and water demand in the main reaches irrigation area of yellow river[D]. Xi’an:Xi’an University of Technology, 2019.
白冬妹, 郭满才, 郭忠升 . 时间序列自回归模型在土壤水分预测中的应用研究[J]. 中国水土保持, 2014(2): 42-45.
BAI D M, GUO M C, GUO Z S . Application of time series autoregressive model in soil moisture prediction[J]. Chinese Society of Soil and Water Conservation, 2014(2): 42-45.
安小宇, 鲁奎豪, 崔光照 . 基于改进樽海鞘优化 BP 神经网络的土壤墒情预测[J]. 中国农机化学报, 2019,40(11): 124-130.
AN X Y, LU K H, CUI G Z . Prediction of soil moisture based on BP neural network optimized by adaptive salp swarm algorithm[J]. Journal of Chinese Agricultural Mechanization, 2019,40(11): 124-130.
PRAKASH S, SHARMA A, SAHU S S . Soil moisture prediction using machine learning[C]// Proceedings of Second International Conference on Inventive Communication and Computational Technologies (ICICCT).[S.l.:s.n.], 2018: 1-6.
MIRJALILI S, GANDOMI A, MIRJALILI S Z ,et al. Salp swarm algorithm:a bio-inspired optimizer for engineering design problems[J]. Advances in Engineering Software, 2017,114(12): 163-191.
TIZHOOSH H R, . Opposition-based learning:a new scheme for machine intelligence[C]// Proceedings of IEEE International Conference on Computational Intelligence for Modelling,Control and Automation and International Conference on Intelligent Agents,Web Technologies and Internet Commerce (CIMCA-IAWTIC’06). Piscataway:IEEE Press, 2005: 695-701.
WANG H, WU Z, RAHNAMAYAN S ,et al. Enhancing particle swarm optimization using generalized opposition-based learning[J]. Information Sciences, 2011,181(20): 4699-4714.
KOHLI M, ARORA S . Chaotic grey wolf optimization algorithm for constrained optimization problems[J]. Journal of Computing and Information Science in Engineering, 2018,5(4): 458-472.
BONYADI M, MICHALEWICZ Z . Particle swarm optimization for single objective continuous space problems:a review[J]. Evolutionary Computation, 2017,25(1): 1-54.
MIRJALILI S, LEWIS A . The whale optimization algorithm[J]. Advances in Engineering Software, 2016,95(5): 51-67.
0
浏览量
358
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构