浏览全部资源
扫码关注微信
1. 河海大学物联网工程学院,江苏 常州 213002
2. 沈阳航空航天大学电子信息工程学院,辽宁 沈阳 110136
3. 河海大学计算机与信息学院,江苏 南京 211106
[ "苏新(1986- ),男,博士,河海大学副教授、硕士生导师,主要研究方向为移动通信、边缘/雾计算、智慧海洋等" ]
[ "王子怡(1997-),女,河海大学硕士生,主要研究方向为海洋网络、边缘/雾计算、计算卸载等" ]
[ "王宇鹏(1981-),男,博士,沈阳航空航天大学教授,辽宁省空天信息感知与智能处理重点实验室副主任,主要研究方向为移动通信技术、物联网、自组织网络等" ]
[ "周思源(1985-),男,博士,河海大学副教授,河海大学无线通信与智能系统研究所副所长,主要研究方向为车路协同自动驾驶、多天线通信技术、边缘计算等" ]
纸质出版日期:2021-03-30,
网络出版日期:2021-03,
移动端阅览
苏新, 王子怡, 王宇鹏, 等. 海洋观监测传感器网络多接入边缘计算卸载方法[J]. 物联网学报, 2021,5(1):36-52.
XIN SU, ZIYI WANG, YUPENG WANG, et al. Multi-access edge computing offloading in maritime monitoring sensor networks. [J]. Chinese journal on internet of things, 2021, 5(1): 36-52.
苏新, 王子怡, 王宇鹏, 等. 海洋观监测传感器网络多接入边缘计算卸载方法[J]. 物联网学报, 2021,5(1):36-52. DOI: 10.11959/j.issn.2096-3750.2021.00205.
XIN SU, ZIYI WANG, YUPENG WANG, et al. Multi-access edge computing offloading in maritime monitoring sensor networks. [J]. Chinese journal on internet of things, 2021, 5(1): 36-52. DOI: 10.11959/j.issn.2096-3750.2021.00205.
多接入边缘计算(MAC
multi-access edge computing)可有效保障海洋观监测传感器网络(简称传感网)的低时延、高可靠数据传输及其各类相关海事应用。在近海场景下,结合边缘计算资源分布建立多用户单跳单播(MSU
multi-user single-hop unicast)与多用户多跳单播(MMU
multi-user multi-hop unicast)两种卸载模型。利用混合整数非线性规划分离优化目标,有效地分配传输功率,并通过改进传统人工鱼群算法(AFSA
artificial fish swarm algorithm)制定卸载决策。结果表明,相比传统方案,所提优化算法可降低网络时延近19%。在远海场景下,建立远海MSU卸载模型,结合网络连通概率提出合理的信道分配算法。结果表明,所提算法在网络连通时间充足时,可增加允许分配子信道数量,降低网络时延;在网络连通时间有限时,可控制卸载的海洋用户设备数量,保障网络传输时延。
Multi-access edge computing can effectively guarantee the low-latency
high-reliability data transmission of ocean monitoring sensor networks and various related maritime applications.In the offshore scenario
two offloading models of multi-user single-hop unicast and multi-user multi-hop unicast were established in combination with the distribution of edge computing resources.The mixed integer nonlinear programming was used to separate optimization targets and effectively allocate transmission power.The unloading decisions were made by improving the traditional artificial fish swarms algorithm.The results show that the proposed optimization algorithm can reduce the network delay by nearly 19% compared with the traditional scheme.In the far-sea scenario
a multi-user single-hop unicast offloading model was established
and a reasonable channel allocation algorithm was proposed based on the network connection probability.The results show that when the network connection time is sufficient
the number of allowable sub-channels can be increased to reduce the network delay.When the network connection time is limited
the number of unloaded marine user equipment can be controlled to ensure the network transmission delay.
海洋观监测传感器网络多接入边缘计算人工鱼群算法信道分配
maritime monitoring sensor networkmulti-access edge computingartificial fish swarm algorithmchannel allocation
PORAMBAGE P, OKWUIBE J, LIYANAGE M ,et al. Survey on multi-access edge computing for Internet of things realization[J]. IEEE Communications Surveys and Tutorials, 2018,20(4): 2961-2991.
TALEB T, SAMDANIS K, MADA B ,et al. On multi-access edge computing:a survey of the emerging 5G network edge cloud architecture and orchestration[J]. IEEE Communications Surveys and Tutorials, 2017,19(3): 1657-1681.
SAFAVAT S, SAPAVATH N N, RAWAT D B ,et al. Recent advances in mobile edge computing and content caching[J]. Digital Communications Networks, 2020,6(2): 189-194.
HUANG L, FENG X, ZHANG C ,et al. Deep reinforcement learning-based joint task offloading and bandwidth allocation for multi-user mobile edge computing[J]. Digital Communications Networks, 2019,5(1): 10-17.
ABBAS N, ZHANG Y, TAHERKORDI A ,et al. Mobile edge computing:a survey[J]. IEEE Internet of Things Journal, 2017,5(1): 450-465.
ZHOU Y, LIU L, WANG L ,et al. Service aware 6G:an intelligent and open network based on convergence of communication,computing and caching[J]. Digital Communications Networks, 2020,6(3): 253-260.
KEWEI S, ANDREW Y T, WEI W ,et al. A survey of edge computing-based designs for IoT security[J]. Digital Communications Networks, 2020,6(2): 195-202.
KAMOUN M, LABIDI W, SARKISS M . Joint resource allocation and offloading strategies in cloud enabled cellular networks[C]// Proceedings of IEEE International Conference on Communications (ICC). Piscataway:IEEE Press, 2018.
WANG J Y, PENG J, WEI Y H ,et al. Adaptive application offloading decision and transmission scheduling for mobile cloud computing[J]. China Communications, 2017,14(3): 169-181.
CAO S W, TAO X F, HOU Y Z ,et al. An energy-optimal offloading algorithm of mobile computing based on HetNets[C]// Proceedings of 2015 International Conference on Connected Vehicles and Expo (ICCVE). Piscataway:IEEE Press, 2015.
MAO Y Y, ZHANG J, LETAIEF K B . Joint task offloading scheduling and transmit power allocation for mobile-edge computing systems[C]// Proceedings of 2017 IEEE Wireless Communications and Networking Conference (WCNC). Piscataway:IEEE Press, 2017.
WANG Y T, SHENG M, WANG X J ,et al. Mobile-edge computing:partial computation offloading using dynamic voltage scaling[J]. IEEE Transactions on Communications, 2016,64(10): 4268-4282.
MAO Y Y, ZHANG J, SONG S H ,et al. Stochastic joint radio and computational resource management for multi-user mobile-edge computing systems[J]. IEEE Transactions on Wireless Communications, 2017,16(9): 5994-6009.
REN J K, YU G D, CAI Y L ,et al. Latency optimization for resource allocation in mobile-edge computation offloading[J]. IEEE Transactions on Wireless Communications, 2018,17(8): 5506-5519.
LI Q P, ZHAO J H, GONG Y ,et al. Energy-efficient computation offloading and resource allocation in fog computing for Internet of everything[J]. China Communications, 2019,16(3): 32-41.
YOU C S, HUANG K B, CHAE H ,et al. Energy-efficient resource allocation for mobile-edge computation offloading[J]. IEEE Transactions on Wireless Communications, 2017,16(3): 1397-1411.
HE W, ZHANG Y Z, HUANG Y H ,et al. latency minimization for full-duplex mobile-edge computing system[C]// Proceedings of 2019 IEEE International Conference on Communications (ICC). Piscataway:IEEE Press, 2019.
PAN Y J, CHEN M, YANG J H ,et al. Energy-efficient NOMA-based mobile edge computing offloading[J]. IEEE Communications Letters, 2019,23(2): 310-313.
周晓敏 . 面向节能的移动边缘计算的卸载策略研究[D]. 北京:北京邮电大学, 2019.
ZHOU X M . Research on offloading strategy in energy-saving mobile edge computing system[D]. Beijing:Beijing University of Posts and Telecommunications, 2019.
SU X, MENG L L, HUANG J ,et al. Intelligent maritime networking with edge services and computing capability[J]. IEEE Transactions on Vehicular Technology, 2020,69(11): 13606-13620.
DAI Y P, SHENG M, LIU J Y ,et al. Resource allocation for low latency mobile edge computation offloading in NOMA networks[C]// Proceedings of 2018 IEEE Global Communications Conference (GLOBECOM). Piscataway:IEEE Press, 2018.
WANG Y T, SHENG M, WANG X J ,et al. Cooperative dynamic voltage scaling and radio resource allocation for energy-efficient multiuser mobile edge computing[C]// Proceedings of 2018 IEEE International Conference on Communications (ICC). Piscataway:IEEE Press, 2018: 1938-1883.
亓晋, 孙海蓉, 巩锟 ,等. 移动边缘计算中基于信誉值的智能计算卸载模型研究[J]. 通信学报, 2020,41(7): 141-151.
QI J, SUN H R, GONG K ,et al. Research on intelligent offloading model based on reputation value in mobile edge computing[J]. Journal on Communications, 2020,41(7): 141-151.
0
浏览量
575
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构