浏览全部资源
扫码关注微信
1. 西安邮电大学陕西省信息通信网络及安全重点实验室,陕西 西安 710071
2. 天元瑞信通信技术股份有限公司,陕西 西安 710121
[ "杜剑波(1982- ),女,博士,西安邮电大学讲师,主要研究方向为边缘计算、非正交多址、人工智能等" ]
[ "薛哪哪(1999- ),女,西安邮电大学通信与信息工程学院硕士生,主要研究方向为边缘计算、非正交多址等" ]
[ "孙艳(1996- ),女,西安邮电大学通信与信息工程学院硕士生,主要研究方向为边缘计算、非正交多址等" ]
[ "姜静(1974- ),女,博士,西安邮电大学教授、博士生导师,主要研究方向为无线通信、大规模MIMO等" ]
[ "李树磊(1981- ),男,天元瑞信通信技术股份有限公司总工程师,主要研究方向为移动网络通信、区块链、边缘计算等" ]
[ "卢光跃(1971- ),男,博士,西安邮电大学教授、博士生导师,主要研究方向为认知无线电、携能通信和边缘计算等" ]
纸质出版日期:2021-03-30,
网络出版日期:2021-03,
移动端阅览
杜剑波, 薛哪哪, 孙艳, 等. 基于NOMA的车辆边缘计算网络优化策略[J]. 物联网学报, 2021,5(1):19-26.
JIANBO DU, NANA XUE, YAN SUN, et al. Optimization strategies in NOMA-based vehicle edge computing network. [J]. Chinese journal on internet of things, 2021, 5(1): 19-26.
杜剑波, 薛哪哪, 孙艳, 等. 基于NOMA的车辆边缘计算网络优化策略[J]. 物联网学报, 2021,5(1):19-26. DOI: 10.11959/j.issn.2096-3750.2021.00207.
JIANBO DU, NANA XUE, YAN SUN, et al. Optimization strategies in NOMA-based vehicle edge computing network. [J]. Chinese journal on internet of things, 2021, 5(1): 19-26. DOI: 10.11959/j.issn.2096-3750.2021.00207.
目前,车载网络正面临着为车辆提供无处不在的连接和大量计算密集型、时延敏感型智能服务的挑战。为了应对这些挑战,非正交多址接入(NOMA
non-orthogonal multiple access)和移动边缘计算(MEC
mobile edge computing)被认为是两种较有前景的技术,它们分别允许多个车辆共享相同的无线资源以及在车辆边缘使用强大的边缘计算资源。在基于 NOMA 的车辆边缘计算网络中,在保证任务处理时延的情况下,提出了任务卸载、用户分簇、计算资源分配和发射功率控制的联合优化问题,使得任务处理成本最小化。由于所提出的问题难以解决,因此将其分解为子问题,并提出了低复杂度和易于实现的方法来解决。仿真结果表明,与其他基准算法相比,该算法在最小化成本方面表现良好。
Nowadays
vehicular network is confronting the challenges to support ubiquitous connections and vast computation-intensive and delay-sensitive smart service for numerous vehicles.To address these issues
non-orthogonal multiple access (NOMA) and mobile edge computing (MEC) are considered as two promising technologies by letting multiple vehicles to share the same wireless resources
and the powerful edge computing resources were adopted at the edge of vehicular wireless access network respectively.A NOMA-based vehicular edge computing network was studied.Under the condition of guaranteeing task processing delay
the joint optimization problem of task offloading
user clustering
computing resource allocation and transmission power control was proposed to minimize the task processing cost.Since the proposed problem was difficult to solve
it was divided into sub-problems
and a low-complexity and easy-to-implement method was proposed to solve it.The simulation results show that compared with other benchmark algorithms
the proposed algorithm performs well in minimizing costs.
边缘计算非正交多址接入车联网
edge computingnon-orthogonal multiple accessvehicular network
CHEN C, WANG C, QIU T ,et al. Caching in vehicular named data networking:architecture,schemes and future directions[J]. IEEE Communications Surveys & Tutorials, 2020,22(4): 2378-2407.
LAI C Z, LU R X, ZHENG D ,et al. Security and privacy challenges in 5G-enabled vehicular networks[J]. IEEE Network, 2020,34(2): 37-45.
CHEN C, HU J N, QIU T ,et al. CVCG:cooperative V2V-aided transmission scheme based on coalitional game for popular content distribution in vehicular Ad-hoc networks[J]. IEEE Transactions on Mobile Computing, 2019,18(12): 2811-2828.
LIU L, CHEN C, PEI Q Q ,et al. Vehicular edge computing and networking:a survey[J]. Mobile Networks and Applications, 2020: 1-24.
CHEN X, SHI Q, YANG L ,et al. Thrifty edge:resource-efficient edge computing for intelligent IoT applications[J]. IEEE Network, 2018,32(1): 61-65.
CHEN X, LI W Z, LU S L ,et al. Efficient resource allocation for on-demand mobile-edge cloud computing[J]. IEEE Transactions on Vehicular Technology, 2018,67(9): 8769-8780.
DU J B, YU F R, LU G Y ,et al. MEC-assisted immersive VR video streaming over terahertz wireless networks:a deep reinforcement learning approach[J]. IEEE Internet of Things Journal, 2020,7(10): 9517-9529.
LIU L, FENG J, PEI Q Q ,et al. Blockchain-enabled secure data sharing scheme in mobile-edge computing:an asynchronous advantage actor–critic learning approach[J]. IEEE Internet of Things Journal, 2021,8(4): 2342-2353.
FENG J, RICHARD Y F, PEI Q Q ,et al. Cooperative computation offloading and resource allocation for blockchain-enabled mobile-edge computing:a deep reinforcement learning approach[J]. IEEE Internet of Things Journal, 2020,7(7): 6214-6228.
FENG J, YU F R, PEI Q Q ,et al. Joint optimization of radio and computational resources allocation in blockchain-enabled mobile edge computing systems[J]. IEEE Transactions on Wireless Communications, 2020,19(6): 4321-4334.
DU J B, YU F R, CHU X L ,et al. Computation offloading and resource allocation in vehicular networks based on dual-side cost minimization[J]. IEEE Transactions on Vehicular Technology, 2019,68(2): 1079-1092.
LI X W, LI J J, LIU Y W ,et al. Residual transceiver hardware impairments on cooperative NOMA networks[J]. IEEE Transactions on Wireless Communications, 2020,19(1): 680-695.
LI X W, ZHAO M L, LIU Y W ,et al. Secrecy analysis of ambient backscatter NOMA systems under I/Q imbalance[J]. IEEE Transactions on Vehicular Technology, 2020,69(10): 12286-12290.
DING Z G, FAN P Z, POOR H V . Impact of non-orthogonal multiple access on the offloading of mobile edge computing[J]. IEEE Transactions on Communications, 2019,67(1): 375-390.
ZHAI D S, LI H, TANG X ,et al. Height optimization and resource allocation for NOMA enhanced UAV-aided relay networks[J]. IEEE Transactions on Communications, 2020(99): 1.
ZHAI D S, ZHANG R N, CAI L ,et al. Energy-efficient user scheduling and power allocation for NOMA-based wireless networks with massive IoTdevices[J]. IEEE Internet of Things Journal, 2018,5(3): 1857-1868.
LIU B H, LIU C X, PENG M G . Resource allocation for energy-efficient MEC in NOMA-enabled massive IoT networks[J]. IEEE Journal on Selected Areas in Communications, 2020(99): 1.
FANG F, XU Y Q, DING Z G ,et al. Optimal resource allocation for delay minimization in NOMA-MEC networks[J]. IEEE Transactions on Communications, 2020,68(12): 7867-7881.
FANG F, XU Y Q, PHAM Q V ,et al. Energy-efficient design of IRS-NOMA networks[J]. IEEE Transactions on Vehicular Technology, 2020,69(11): 14088-14092.
YANG C, LIU Y, CHEN X ,et al. Efficient mobility-aware task offloading for vehicular edge computing networks[J]. IEEE Access, 2019(7): 26652-26664.
WANG J, FENG D Q, ZHANG S L ,et al. Computation offloading for mobile edge computing enabled vehicular networks[J]. IEEE Access, 2019(7): 62624-62632.
ZHOU J, WU F, ZHANG K ,et al. Joint optimization of offloading and resource allocation in vehicular networks with mobile edge computing[C]// Proceedings of 2018 10th International Conference on Wireless Communications and Signal Processing (WCSP). Piscataway:IEEE Press, 2018: 1-6.
张璐 . NOMA技术与车联网V2I通信结合系统性能仿真研究[J]. 信息通信, 2019,32(2): 285-289.
ZHANG L . Performance simulation of the combination of NOMA and V2I communication[J]. Information & Communications, 2019,32(2): 285-289.
FANG S S, CHEN H Y, KHAN Z ,et al. On the content delivery efficiency of NOMA assisted vehicular communication networks with delay constraints[J]. IEEE Wireless Communications Letters, 2020,9(6): 847-850.
PEIRAN D, ZHAOLONG N, RONG M ,et al. NOMA-based energy-efficient task scheduling in vehicular edge computing networks:a self-imitation learning-based approach[J]. China Communications, 2020,17(11): 1-11.
0
浏览量
615
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构