浏览全部资源
扫码关注微信
[ "王福展(1995- ),男,南京邮电大学硕士生,主要研究方向为无线室内定位" ]
[ "朱晓荣(1977- ),女,博士,南京邮电大学教授、博士生导师,主要研究方向为5G网络、物联网、无线定位算法等" ]
[ "陈美娟(1971- ),女,博士,南京邮电大学副教授、硕士生导师,主要研究方向为5G网络、物联网" ]
[ "朱洪波(1956- ),男,博士,南京邮电大学教授、博士生导师,主要研究方向为泛在无线通信与物联网、宽带移动通信、下一代网络、无线通信与电磁兼容等" ]
纸质出版日期:2021-06-30,
网络出版日期:2021-06,
移动端阅览
王福展, 朱晓荣, 陈美娟, 等. 基于生成对抗网络的高精度室内无线定位方法[J]. 物联网学报, 2021,5(2):107-115.
FUZHAN WANG, XIAORONG ZHU, MEIJUAN CHEN, et al. High-precision indoor wireless positioning method based on generative adversarial network. [J]. Chinese journal on internet of things, 2021, 5(2): 107-115.
王福展, 朱晓荣, 陈美娟, 等. 基于生成对抗网络的高精度室内无线定位方法[J]. 物联网学报, 2021,5(2):107-115. DOI: 10.11959/j.issn.2096-3750.2021.00208.
FUZHAN WANG, XIAORONG ZHU, MEIJUAN CHEN, et al. High-precision indoor wireless positioning method based on generative adversarial network. [J]. Chinese journal on internet of things, 2021, 5(2): 107-115. DOI: 10.11959/j.issn.2096-3750.2021.00208.
无线信号在传播过程中容易受到干扰,这限制了传统室内定位方法在实际生活中的应用。而基于位置的指纹定位技术具有普适性强的优点,是当前的研究热点。指纹数据的数量是影响指纹定位精度的重要因素,但是采集大量指纹数据的成本较大。因此,如何使用少量指纹数据实现较高定位精度成为指纹定位技术的难点。针对此问题,提出了一种基于生成对抗网络(GAN
generative adversarial network)的高精度室内无线定位方法。首先,在室内等间隔密集地采集指纹数据,构造初始指纹数据集,选取初始指纹数据集中部分指纹数据,使用 GAN 利用部分指纹数据得到大量指纹数据;然后,基于这些生成数据,使用k最近邻(KNN
k-nearest neighbor)分类算法模型和随机森林模型进行定位预测。实验结果表明,该方法能够基于少量指纹数据实现较高的无线定位精度,定位精度达15.4 cm。
Because wireless signals are susceptible to interference during the propagation process
the application of traditional indoor positioning methods in real life is limited.Because location-based fingerprint positioning technology has the advantage of strong universality
it has become a current research hotspot.The number of fingerprint data is an important factor affecting the accuracy of fingerprint positioning
but the cost of collecting a large amount of fingerprint data is large.Therefore
how to use a small amount of fingerprint data to achieve higher positioning accuracy is a difficult point of fingerprint positioning technology.Aiming at this problem
a high-precision indoor wireless positioning method based on generative adversarial network was proposed.Firstly
fingerprint data was collected densely at equal intervals indoors
and the initial fingerprint data set was constructed
the part of the fingerprint data was selected in the initial fingerprint data set
and the generative adversarial network was used to obtain a large amount of fingerprint data from part of the fingerprint data.Then
based on these generated data
a KNN (k-nearest neighbor) model and a random forest model were used for location prediction.Experimental results show that this method can achieve high wireless positioning accuracy based on a small amount of fingerprint data
and the positioning accuracy can reach 15.4 cm.
指纹定位生成对抗网络室内KNN随机森林
fingerprint localizationgenerative adversarial networkindoorKNNrandom forest
导航与位置服务科技专项总体专家组. 室内外高精度定位导航白皮书[R]. 2013.
General Expert Group of Navigation and Location Service Science and Technology. White paper on indoor and outdoor high precision positioning and navigation[R]. 2013.
HAN G J, JIANG J F, ZHANG C Y ,et al. A survey on mobile anchor node assisted localization in wireless sensor networks[J]. IEEE Communications Surveys and Tutorials, 2016,18(3): 2220-2243.
ASHKENAZI V, ROBERTS G W . Experimental monitoring of the Humber bridge using GPS[J]. Proceedings of the Institution of Civil Engineers-Civil Engineering, 1997,120(4): 177-182.
LIU W Y, DING H, HUANG X T ,et al. TOA estimation in IR UWB ranging with energy detection receiver using received signal characteristics[J]. IEEE Communications Letters, 2012,16(5): 738-741.
LIU H, DARABI H, BANERJEE P ,et al. Survey of wireless indoor positioning techniques and systems[J]. IEEE Transactions on Systems,Man and Cybernetics,Part C (Applications and Reviews), 2007,37(6): 1067-1080.
MEXTORF H, DASCHNER F, KENT M ,et al. UWB free-space characterization and shape recognition of dielectric objects using statistical methods[J]. IEEE Transactions on Instrumentation and Measurement, 2011,60(4): 1389-1396.
TORRES J, BELMONTE O, MONTOLIU R ,et al. How feasible is Wi-Fi fingerprint-based indoor positioning for in-home monitoring[C]// 2016 12th International Conference on Intelligent Environments (IE). Piscataway:IEEE Press, 2016: 68-75.
ZHOU M, QIU F, TIAN Z S ,et al. Positioning error & signal distribution:an analysis towards lower error bound in WLAN fingerprint based indoor localization[C]// 2015 IEEE Global Communications Conference (GLOBECOM). Piscataway:IEEE Press, 2015: 1-6.
HERNÁNDEZ N, OCAÑA M, ALONSO J ,et al. Continuous space estimation:increasing Wi-Fi-based indoor localization resolution without increasing the site-survey effort[J]. Sensors, 2017,17(12): 147.
WANG X Y, GAO L J, MAO S W ,et al. CSI-based fingerprinting for indoor localization:a deep learning approach[J]. IEEE Transactions on Vehicular Technology, 2016:1.
KAEMARUNGSI K, KRISHNAMURTHY P . Analysis of WLAN’s received signal strength indication for indoor location fingerprinting[J]. Pervasive and Mobile Computing, 2012,8(2): 292-316.
D’SOUZA M, SCHOOTS B, ROS M . Indoor position tracking using received signal strength-based fingerprint context aware partitioning[J]. IET Radar,Sonar & Navigation, 2016,10(8): 1347-1355.
LI Q Y, LI W, SUN W ,et al. Fingerprint and assistant nodes based Wi-Fi localization in complex indoor environment[J]. IEEE Access, 2016:1.
NIU J W, WANG B W, CHENG L ,et al. WicLoc:an indoor localization system based on Wi-Fi fingerprints and crowdsourcing[C]// 2015 IEEE International Conference on Communications (ICC). Piscataway:IEEE PressIEEE, 2015: 2013-3008.
GOODFELLOW I J, POUGET-ABADIE J, MIRZA M ,et al. Generative adversarial nets[C]// International Conference on Neural Information Processing Systems. MIT Press, 2014: 2672-2680.
ARJOVSKY M, CHINTALA S, BOTTOU L . Wasserstein GAN[J]. International Conference on Machine Learning,[S.l:s.n.], 2017.
GULRAJANI I, AHMED F, ARJOVSKY M ,et al. Improved training of Wasserstein GANs[C]// Advances in Neural Information Processing Systems. Massachusetts:MIT Press, 2017: 5767-5777.
郭妍, 陈晓, 任晓晔 . 一种优化随机森林模型的室内定位方法[J]. 激光杂志, 2018,39(10): 70-74.
GUO Y, CHEN X, REN X Y . An indoor positioning method for optimizing random forest model[J]. Laser Journal, 2018,39(10): 70-74.
张萌, 吕艳, 倪益华 . 基于密度峰值聚类的随机森林室内定位[J]. 计算机工程与设计, 2018,39(5): 1490-1496.
ZHANG M, LYU Y, NI Y H . Random forest indoor location based on density peak cluster[J]. Computer Engineering and Design, 2018,39(5): 1490-1496.
0
浏览量
411
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构