浏览全部资源
扫码关注微信
1. 西安邮电大学通信与信息工程学院,陕西 西安 710121
2. 陕西省信息通信网络及安全重点实验室,陕西 西安 710121
[ "赵小强(1977- ),男,博士,西安邮电大学教授,主要研究方向为物联网技术及应用" ]
[ "任少亚(1994- ),女,西安邮电大学硕士生,主要研究方向为物联网技术及应用、路由协议" ]
[ "翟永智(1976- ),男,博士,西安邮电大学讲师,主要研究方向为物联网技术及应用" ]
[ "权恒(1994- ),男,西安邮电大学硕士生,主要研究方向为物联网技术及应用、智慧农业" ]
[ "杨婷(1998- ),女,西安邮电大学硕士生,主要研究方向为物联网技术及应用" ]
纸质出版日期:2021-06-30,
网络出版日期:2021-06,
移动端阅览
赵小强, 任少亚, 翟永智, 等. 基于模拟退火算法和改进灰狼优化器的异构无线传感器网络路由协议[J]. 物联网学报, 2021,5(2):97-106.
XIAOQIANG ZHAO, SHAOYA REN, YONGZHI ZHAI, et al. Heterogeneous wireless sensor network routing protocol based on simulated annealing algorithm and modified grey wolf optimizer. [J]. Chinese journal on internet of things, 2021, 5(2): 97-106.
赵小强, 任少亚, 翟永智, 等. 基于模拟退火算法和改进灰狼优化器的异构无线传感器网络路由协议[J]. 物联网学报, 2021,5(2):97-106. DOI: 10.11959/j.issn.2096-3750.2021.00211.
XIAOQIANG ZHAO, SHAOYA REN, YONGZHI ZHAI, et al. Heterogeneous wireless sensor network routing protocol based on simulated annealing algorithm and modified grey wolf optimizer. [J]. Chinese journal on internet of things, 2021, 5(2): 97-106. DOI: 10.11959/j.issn.2096-3750.2021.00211.
合理利用节点的能量异构特性延长网络生命周期是异构无线传感器网络(HWSN
heterogeneous wireless sensor network)的主要目标之一。因此,根据节点能量的异构性提出了一种基于模拟退火(SA
simulated annealing)算法和改进灰狼优化器(GWO
grey wolf optimizer)的HWSN路由协议SA-MGWO(SA-modified grey wolf optimizer)。首先,该协议通过为能量异构的节点定义不同的适应度函数进行初始簇的选取;然后计算节点的适应值,并将其视为灰狼优化器中的初始权重;同时,根据狼群与猎物的距离以及系数向量对权重进行动态更新,提高灰狼优化器的寻优能力;最后,利用模拟退火算法保证异构网络中最优簇集的选取。仿真结果表明,相比于SEP(stable election protocol)、分布式能量有效成簇(DEEC
distribute energy efficient clustering)、M-SEP及FIGWO(fitness value based improved grey wolf optimizer)协议,SA-MGWO协议的网络生命周期分别提高了53.1%、31.9%、46.5%和27.0%。
It’s one of the main goals of the heterogeneous wireless sensor network (HWSN) to extend the network lifecycle by reasonably utilizing the heterogeneity of node energy.Therefore
according to the heterogeneity of node energy
a routing protocol (SA-MGWO) for HWSN based on simulated annealing (SA) algorithm and modified grey wolf optimizer (GWO) was proposed.Firstly
the appropriate initial clusters were selected by dening different tness functions for heterogeneous energy nodes.Secondly
The tness values of nodes were calculated and treated as initial weights in the GWO.At the same time
the weights were updated dynamically according to the distance between the wolves and their prey and coefficient vectors to improve the GWO’s optimization ability.Finally
simulated annealing algorithm was used to ensure the selection of optimal cluster set in heterogeneous networks.Compared with stable election protocol (SEP)
distribute energy efficient clustering (DEEC)
modified stable election protocol (M-SEP)
and fitness value based improved grey wolf optimizer (FIGWO) protocols
the experimental results indicate that the network lifecycle of the SA-MGWO protocol improves by 53.1%
31.9%
46.5% and 27.0% respectively.
异构无线传感器网络模拟退火算法灰狼优化器网络生命周期
heterogeneous wireless sensor networksimulated annealing algorithmgrey wolf optimizernetwork lifecycle
徐一秋 . 无线传感器网络研究现状与应用[J]. 黑龙江科学, 2016,7(9): 8-9.
XU Y Q . Research status and application of wireless sensor network[J]. Heilongjiang Science, 2016,7(9): 8-9.
SRIVASTAVA S, SINGH M, GUPTA S . Wireless sensor network:a survey[C]// 2018 International Conference on Automation and Computational Engineering (ICACE). Piscataway:IEEE Press, 2018: 159-163.
刘宏, 关业欢, 吕孟伟 . 基于自适应权重的无线传感器网络分簇路由协议[J]. 小型微型计算机系统, 2019,40(12): 2603-2607.
LIU H, GUAN Y H, LYU M W . Clustering routing protocol based on adaptive weight for wireless sensor networks[J]. Journal of Chinese Computer Systems, 2019,40(12): 2603-2607.
OSAMY W, SALIM A, KHEDR A M . An information entropy based-clustering algorithm for heterogeneous wireless sensor networks[J]. Wireless Networks, 2020,26(3): 1869-1886.
LOGAMBIGAI R, KANNAN A . Fuzzy logic based unequal clustering for wireless sensor networks[J]. Wireless Networks, 2016,22(3): 945-957.
HEINZELMAN W R, CHANDRAKASAN A, BALAKRISHNAN H . Energy-efficient communication protocol for wireless microsensor networks[C]// Proceedings of the 33rd Annual Hawaii International Conference on System Sciences. Piscataway:IEEE Press, 2000: 1-10.
ZHAO X, ZHU H, ALEKSIC S ,et al. Energy-efficient routing protocol for wireless sensor networks based on improved grey wolf optimizer[J]. KSII Transactions on Internet and Information Systems, 2018,12(6): 2644-2657.
MA Z F, LI G M, GONG Q C . Improvement on LEACH-C protocol of wireless sensor network (LEACH-CC)[J]. International Journal of Future Generation Communication and Networking, 2016,9(2): 183-192.
SMARAGDAKIS G, MATTA I, BESTAVROS A . SEP:a stable election protocol for clustered heterogeneous wireless sensor networks[C]// Proceedings of the 2nd International Workshop on Sensor and Actor Network Protocols and Applications.[S.l.:s.n.], 2004.
SINGH D, PANDA C K . Performance analysis of modified stable election protocol in heterogeneous WSN[C]// 2015 International Conference on Electrical,Electronics,Signals,Communicationand Optimization (EESCO).[S.l.:s.n.], 2015: 1-5.
卿利, 朱清新, 王明文 . 异构传感器网络的分布式能量有效成簇算法[J]. 软件学报, 2006(3): 139-147.
QING L, ZHU Q X, WANG M W . Design of a distributed energy-efficient clustering algorithm for heterogeneous wireless sensor network[J]. Journal of Software, 2006(3): 139-147.
NARANJO P G V, SHOJAFAR M, MOSTAFAEI H.et al . P-SEP:a prolong stable election routing algorithm for energy-limited heterogeneous fog-supported wireless sensor networks[J]. The Journal of Supercomputing, 2017,73(2): 733-755.
WANG J, GAO Y, LIU W ,et al. An improved routing schema with special clustering using PSO algorithm for heterogeneous wireless sensor network[J]. Sensors, 2019,19(3): 671-687.
BANU S S, BASKARAN K . Hybrid FGWO based FLCs modeling for performance enhancement in wireless body area networks[J]. Wireless Personal Communications, 2018,100(3): 1163-1199.
HEINZELMAN W B, CHANDRAKASAN A P, BALAKRISHNAN H . An application-specific protocol architecture for wireless microsensor networks[J]. IEEE Transactions on Wireless Communications, 2002,1(4): 660-670.
0
浏览量
472
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构