浏览全部资源
扫码关注微信
[ "韩成成(1992- ),男,中国科学技术大学博士生,主要研究方向为通信感知融合" ]
[ "陈力(1987- ),男,中国科学技术大学副研究员,主要研究方向为无线通信、通信计算融合、通信感知融合等" ]
[ "王卫东(1967- ),男,中国科学技术大学教授,主要研究方向为电磁场与微波技术、雷达技术、无线通信等" ]
纸质出版日期:2021-03-30,
网络出版日期:2021-03,
移动端阅览
韩成成, 陈力, 王卫东. 物联网中多现象观测的压缩感知通信一体化方法[J]. 物联网学报, 2021,5(1):53-61.
CHENGCHENG HAN, LI CHEN, WEIDONG WANG. CS-communication integration method in IoT monitoring multiple phenomena. [J]. Chinese journal on internet of things, 2021, 5(1): 53-61.
韩成成, 陈力, 王卫东. 物联网中多现象观测的压缩感知通信一体化方法[J]. 物联网学报, 2021,5(1):53-61. DOI: 10.11959/j.issn.2096-3750.2021.00214.
CHENGCHENG HAN, LI CHEN, WEIDONG WANG. CS-communication integration method in IoT monitoring multiple phenomena. [J]. Chinese journal on internet of things, 2021, 5(1): 53-61. DOI: 10.11959/j.issn.2096-3750.2021.00214.
观测多现象的大规模物联网采用正交多址接入(OMA
orthogonal multiple access)机制传输分布式节点的观测数据,会造成极大的传输时延,导致数据失去时效性。针对这一问题,研究了基于压缩感知(CS
compressed sensing)通信一体化的数据传输方法,该方法将物联网中分布式节点按照观测现象分为多节点簇,不同节点簇在不同分配时隙内传输观测数据。具体来说,在分配的数据传输时隙内,各簇节点利用随机信道作为CS观测矩阵,以相干传输方式将观测数据传至融合中心(FC
fusion center)形成CS观测值,然后FC利用CS算法从CS观测值中恢复观测数据。通过推导可达速率,发现可达性能与节点簇时隙分配密切相关。为实现最优性能,分别在最大总速率和保证观测公平性两个目标下,研究了物联网中节点簇时隙分配问题。最后,通过数值仿真进行性能验证和分析,仿真结果表明,与现有OMA数据传输机制相比,压缩感知通信一体化方法明显提高了物联网的观测数据速率。
The large-scale Internet of things with multi observation phenomenon uses orthogonal multiple access (OMA) mechanism to transmit the observation data of distributed nodes
which will cause great transmission delay and lead to the loss of timeliness of data.To cope with the heavy latency of observations due to OMA
an efficient scheme integrating compressed sensing (CS) technique with communication was proposed for large-scale Internet of things to monitor multiple phenomena.In this proposed scheme
the nodes monitoring different phenomena were assigned to different time durations for transmission.During the assigned time duration
all nodes concurrently transmitted observations to the fusion center (FC)for CS measurement
and the FC recovered observation by CS algorithms.To evaluate the performance of the proposed scheme
the achievable rate of the observed phenomena was derived
which was closely related to the time allocation of clusters.To further improve the performance
the optimization problems of time allocation were studied under the two objectives of maximizing the total rate and ensuring the fairness of observation.Finally
the performance was verified and analyzed by numerical simulation.The simulation results show that the achievable rate of observations for different phenomena is improved the proposed scheme significantly compared with OMA schemes.
大规模物联网多现象观测压缩感知通信一体化
large-scale Internet of thingsmultiple phenomena monitoringCS-communication integration
AL-TURJMAN F . 5G-enabled devices and smart-spaces in social-IoT:an overview[J]. Future Generation Computer Systems, 2019(92): 732-744.
CHERNYSHEV M, BAIG Z, BELLO O ,et al. Internet of things (IoT):research,simulators,and testbeds[J]. IEEE Internet of Things Journal, 2018,5(3): 1637-1647.
CHETTRI L, BERA R . A comprehensive survey on Internet of things (IoT) toward 5G wireless systems[J]. IEEE Internet of Things Journal, 2020,7(1): 16-32.
马佳星, 熊轲, 张煜 ,等. 无线能量收集驱动的铁路物联网中断性能分析[J]. 物联网学报, 2020,4(3): 52-59.
MA J X, XIONG K, ZHANG Y ,et al. Outage performance analysis of wireless powered railway Internet of things[J]. Chinese Journal on Internet of Things, 2020,4(3): 52-59.
XU L N, COLLIER R,O’HARE G M P . A survey of clustering techniques in WSNs and consideration of the challenges of applying such to 5G IoT scenarios[J]. IEEE Internet of Things Journal, 2017,4(5): 1229-1249.
DING Z G, LEI X F, KARAGIANNIDIS G K ,et al. A survey on non-orthogonal multiple access for 5G networks:research challenges and future trends[J]. IEEE Journal on Selected Areas in Communications, 2017,35(10): 2181-2195.
QIN Z J, FAN J C, LIU Y W ,et al. Sparse representation for wireless communications:acompressive sensing approach[J]. IEEE Signal Processing Magazine, 2018,35(3): 40-58.
QAISAR S, BILAL R M, IQBAL W ,et al. Compressive sensing:from theory to applications,a survey[J]. Journal of Communications and Networks, 2013,15(5): 443-56.
黄凌 . 采用压缩感知的标准测控信号处理[J]. 电讯技术, 2014(5): 578-583.
HUANG L . A TT & C signal processing method based on compressed sensing[J]. Telecommunication Engineering, 2014(5): 578-583.
何风行, 余志军, 刘海涛 . 基于压缩感知的无线传感器网络多目标定位算法[J]. 电子与信息学报, 2012,34(3): 716-21.
HE F X, YU Z J, LIU H T . Multi target localization algorithm based on compressed sensing in wireless sensor networks[J]. Journal of Electronics and Information Technology, 2012,34(3): 716-21.
RAZZAQUE M A, DOBSON S . Energy-efficient sensing in wireless sensor networks using compressed sensing[J]. Sensors, 2014,14(2): 2822-2859.
DUARTE M R, WAKIN M B, BARON D ,et al. Universal distributed sensing via random projections[C]// Proceedings of 2006 5th International Conference on Information Processing in Sensor Networks. Piscataway:IEEE Press, 2006.
LUO C, WU F, SUN J ,et al. Compressive data gathering for large-scale wireless sensor networks[C]// Proceedings of the 15th Annual International Conference on Mobile Computing And Networking. New York:ACM Press, 2009.
QUER G, MASIERO R, MUNARETTO D ,et al. On the interplay between routing and signal representation for compressive sensing in wireless sensor networks[C]// Proceedings of 2009 Information Theory and Applications Workshop. Piscataway:IEEE Press, 2009: 206-215.
TANG Y, ZHANG B W, JING T ,et al. Robust compressive data gathering in wireless sensor networks[J]. IEEE Transactions on Wireless Communications, 2013,12(6): 2754-2761.
HAUPT J, BAJWA W U, RABBAT M ,et al. Compressed sensing for networked data[J]. IEEE Signal Processing Magazine, 2008,25(2): 92-101.
BAJWA W U, HAUPT J D, SAYEED A M ,et al. Joint source-channel communication for distributed estimation in sensor networks[J]. IEEE Transactions on Information Theory, 2007,53(10): 3629-3653.
YANG G, TAN V Y F, HO C K ,et al. Wireless compressive sensing for energy harvesting sensor nodes[J]. IEEE Transactions on Signal Processing, 2013,61(18): 4491-505.
HAN C C, CHEN L, WANG W D . Compressive sensing in wireless powered network:regarding transmission as measurement[J]. IEEE Wireless Communications Letters, 2019,8(6): 1709-1712.
BOCHE H, CALDERBANK R, KUTYNIOK G ,et al. Compressed sensing and its applications[M]. Berlin: Springer, 2015.
STONE J V . Information theory:a tutorial introduction[M]. Marrickville: Sebtel Press, 2015.
QUER G, MASIERO R, PILLONETTO G ,et al. Sensing,compression,and recovery for WSNs:sparse signal modeling and monitoring framework[J]. IEEE Transactions on Wireless Communications, 2012,11(10): 3447-3461.
0
浏览量
370
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构