浏览全部资源
扫码关注微信
1. 西安邮电大学,陕西 西安 710021
2. 陕西省信息通信网络及安全重点实验室,陕西 西安 710121
3. 国家无线电频谱管理研究所,陕西 西安 710061;
[ "赵小强(1977−2021),男,博士,西安邮电大学教授,主要研究方向为物联网技术及应用" ]
[ "吴帅(1994− ),男,西安邮电大学硕士生,主要研究方向为物联网技术及应用" ]
[ "高传义(1994− ),男,西安邮电大学硕士生,主要研究方向为物联网技术及应用" ]
[ "李宁(1995− ),男,西安邮电大学硕士生,主要研究方向为物联网技术及应用" ]
[ "李波东(1997− ),男,西安邮电大学硕士生,主要研究方向为物联网技术及应用" ]
[ "杨小勇(1975− ),男,国家无线电频谱管理研究所高级工程师,主要研究方向为无线电监测、测向、定位和信号分析等" ]
纸质出版日期:2021-12-30,
网络出版日期:2021-12,
移动端阅览
赵小强, 吴帅, 高传义, 等. 基于测距修正及改进灰狼优化器的DV-Hop定位算法研究[J]. 物联网学报, 2021,5(4):62-70.
XIAOQIANG ZHAO, SHUAI WU, CHUANYI GAO, et al. Research on DV-Hop location algorithm based on range correction and improved gray wolf optimizer. [J]. Chinese journal on internet of things, 2021, 5(4): 62-70.
赵小强, 吴帅, 高传义, 等. 基于测距修正及改进灰狼优化器的DV-Hop定位算法研究[J]. 物联网学报, 2021,5(4):62-70. DOI: 10.11959/j.issn.2096-3750.2021.00222.
XIAOQIANG ZHAO, SHUAI WU, CHUANYI GAO, et al. Research on DV-Hop location algorithm based on range correction and improved gray wolf optimizer. [J]. Chinese journal on internet of things, 2021, 5(4): 62-70. DOI: 10.11959/j.issn.2096-3750.2021.00222.
节点定位是无线传感器网络中的一个重要问题,基于测距的定位算法虽然定位误差较小,但在应用于室外三维环境时具有较多的局限性。因此,以原始的距离向量(DV-Hop
distance vector-hop)算法为研究基础,分别引入接收信号强度指示(RSSI
received signal strength indication)算法和最小均方误差(MMSE
minimum mean squared error)准则对算法的测距过程进行修正,同时采用改进的灰狼优化器对确定未知节点坐标的过程进行优化处理。仿真结果表明,相较于原始DV-Hop算法和IPDV-Hop算法,IGDV-Hop算法在初始参数下的平均定位误差率分别降低了28%和17%,定位效果得到明显改善。
Node location is an important problem in wireless sensor network.Although the location algorithm based on distance measurement has small positioning error
it has many limitations when applied to outdoor environments.Therefore
based on the original distance vector-hop (DV-Hop) algorithm
received signal strength indication (RSSI) technology and the minimum mean square error (MMSE) criterion to modify the algorithm’s ranging process were introduced
and the improved gray wolf optimizer was used to optimize the process of determining the coordinates of unknown nodes.Simulation results show that
compared with the original DV-Hop algorithm and IPDV-Hop algorithm
the average location error rate of the IGDV-Hop algorithm under the initial parameters was reduced by 28% and 17% respectively
and the location effect was significantly improved.
无线传感器网络节点定位DV-Hop算法灰狼优化器
wireless sensor networknode locationDV-Hop algorithmgray wolf optimizer
张凤斌, 杨秋杰, 席亮 . WSNs 入侵检测中实值否定选择算法研究[J]. 计算机工程与科学, 2016,38(9): 1818-1822.
ZHANG F B, YANG Q J, XI L . A real-value negative selection algorithm in WSNs intrusion detections[J]. Computer Engineering &Science, 2016,38(9): 1818-1822.
SHAHZAD F, SHELTAMI T R, SHAKSHUKI E M . DV-maxHop:a fast and accurate range-free localization algorithm for anisotropic wireless networks[J]. IEEE Transactions on Mobile Computing, 2017,16(9): 2494-2505.
陈舒 . 无线传感网络中基于 DV-Hop 的节点定位算法研究[D]. 重庆:重庆邮电大学, 2017.
CHEN S . Research on node localization algorithm based on DV-hop for wireless sensor networks[D]. Chongqing:Chongqing University of Posts and Telecommunications, 2017.
江力, 徐海川, 张磊 ,等. NLOS 环境中的线性回归最小二乘三维定位算法[J]. 湖南工业大学学报, 2019,33(6): 23-28.
JIANG L, XU H C, ZHANG L ,et al. 3D localization algorithm based on linear regression and least square in NLOS environment[J]. Journal of Hunan University of Technology, 2019,33(6): 23-28.
张兢, 史文进, 李冠迪 ,等. 无线传感网络中基于RSSI质心定位的改进算法[J]. 重庆理工大学学报(自然科学), 2017,31(3): 132-136.
ZHANG J, SHI W J, LI G D ,et al. Improved RSSI-based centroid localization algorithm for wireless sensor networks[J]. Journal of Chongqing University of Technology (Natural Science), 2017,31(3): 132-136.
汪晨, 张玲华 . 基于人工鱼群算法的改进质心定位算法[J]. 计算机技术与发展, 2018,28(5): 103-106.
WANG C, ZHANG L H . An improved centroid localization algorithm based on optimized artificial fish swarm algorithm[J]. Computer Technology and Development, 2018,28(5): 103-106.
XUE W X, QIU W N, HUA X H ,et al. Improved Wi-Fi RSSI measurement for indoor localization[J]. IEEE Sensors Journal, 2017,17(7): 2224-2230.
李仁和, 丁勤, 王洪元 ,等. 基于自适应粒子群算法的改进DV-Hop定位算法[J]. 计算机与应用化学, 2014,31(10): 1201-1204.
LI R H, DING Q, WANG H Y ,et al. An improved DV-Hop localization algorithm based on adaptive particle swarm optimization[J]. Computers and Applied Chemistry, 2014,31(10): 1201-1204.
高文根, 陈其工, 江明 ,等. 基于距离补偿模型的改进 DV-Hop 定位算法[J]. 计算机工程, 2015,41(3): 32-36.
GAO W G, CHEN Q G, JIANG M ,et al. Improved DV-hop localization algorithm based on distance compensation model[J]. Computer Engineering, 2015,41(3): 32-36.
尼迎波, 陈元琰, 叶娟 ,等. 基于多通信半径加余弦定理的DV-Hop算法的改进[J]. 计算机科学, 2018,45(S2): 320-324.
NI Y B, CHEN Y Y, YE J ,et al. Improvement of DV-hop algorithm based on multiple communication radii and cosine theorem[J]. Computer Science, 2018,45(S2): 320-324.
TOMIC S, MEZEI I . Improvements of DV-Hop localization algorithm for wireless sensor networks[J]. Telecommunication Systems, 2016,61(1): 93-106.
赵芝璞, 吴栋, 王艳 ,等. 基于平均跳距和位置优化的改进DV-Hop 定位算法[J]. 系统仿真学报, 2016,28(6): 1273-1280.
ZHAO Z P, WU D, WANG Y ,et al. Improved DV-hop localization algorithm based on average hopping distance and position optimization[J]. Journal of System Simulation, 2016,28(6): 1273-1280.
宋晓东, 孙丽君, 陈天飞 . DV-Hop 优化算法的性能分析与比较[J]. 电子测量与仪器学报, 2019,33(5): 125-133.
SONG X D, SUN L J, CHEN T F . Performance analysis and comparison of DV-Hop optimization algorithm[J]. Journal of Electronic Measurement and Instrumentation, 2019,33(5): 125-133.
MIRJALILI S, MIRJALILI S M, LEWIS A . Grey wolf optimizer[J]. Advances in Engineering Software, 2014,69: 46-61.
秦鹏程 . 无线传感器网络 DV-Hop 定位算法的优化研究[D]. 南京:南京邮电大学, 2016.
QIN P C . Optimization study on DV-hop localization algorithm in wireless sensor network[D]. Nanjing:Nanjing University of Posts and Telecommunications, 2016.
MUANGKOTE N, SUNAT K, CHIEWCHANWATTANA S . An improved grey wolf optimizer for training q-Gaussian Radial Basis Functional-link nets[C]// Proceedings of 2014 International Computer Science and Engineering Conference (ICSEC). Piscataway:IEEE Press, 2014: 209-214.
EMARY E, ZAWBAA H M, GROSAN C ,et al. Feature subset selection approach by gray-wolf optimization[M]// Advances in Intelligent Systems and Computing. Cham: Springer International Publishing, 2015: 1-13.
0
浏览量
491
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构