浏览全部资源
扫码关注微信
[ "胡奕旸(1996− ),男,南京邮电大学通信与信息工程学院硕士生,主要研究方向为移动通信、无线技术" ]
[ "齐丽娜(1979− ),女,南京邮电大学副教授、硕士生导师,主要研究方向为无线通信与电磁兼容、移动通信与宽带无线技术等" ]
纸质出版日期:2021-09-30,
网络出版日期:2021-09,
移动端阅览
胡奕旸, 齐丽娜. 基于自适应压缩感知的大规模MIMO-OFDM系统信道估计方法[J]. 物联网学报, 2021,5(3):78-85.
YIYANG HU, LINA QI. Channel estimation method of massive MIMO-OFDM system based on adaptive compressed sensing. [J]. Chinese journal on internet of things, 2021, 5(3): 78-85.
胡奕旸, 齐丽娜. 基于自适应压缩感知的大规模MIMO-OFDM系统信道估计方法[J]. 物联网学报, 2021,5(3):78-85. DOI: 10.11959/j.issn.2096-3750.2021.00227.
YIYANG HU, LINA QI. Channel estimation method of massive MIMO-OFDM system based on adaptive compressed sensing. [J]. Chinese journal on internet of things, 2021, 5(3): 78-85. DOI: 10.11959/j.issn.2096-3750.2021.00227.
大规模多输入多输出(MIMO
multiple-input multiple-output)是物联网(IoT
Internet of things)中为多种机器类设备高效提供连接服务的解决方案,而高效的连接服务需要准确的信道估计。针对大规模MIMO系统的下行信道估计中导频开销大和估计归一化均方误差(NMSE
normalized mean square error)性能较差的问题,以压缩感知(CS
compressed sensing)理论为基础,在结合信道空间域共同稀疏性的同时,利用相邻时隙差分信道冲激响应(CIR
channel impulse response)的稀疏性更低的特点,大大减少了导频发送的数量。在重构算法上,提出了一种二阶段差分估计算法,将一组连续相关时隙内的信道估计分为两个阶段,并结合自适应压缩感知的思想以实现快速准确的CIR估计。仿真结果表明,所提出的二阶段差分信道估计算法不仅在估计的NMSE性能、数据传输速率上相比已有的基于CS的多重测量向量(MMV
multiple measurement vector)算法有显著的提高,而且在运行时间复杂度上也有一定的降低。
Massive multiple-input multiple-output (MIMO) is a solution for efficiently providing connection services for a variety of machine equipment in the Internet of things (IoT)
and efficient connection services require accurate channel estimation.Aimed at the problems of high pilot overhead and poor performance of normalized mean square error (NMSE) estimation in downlink channel estimation of massive MIMO systems
based on the compressed sensing (CS) theory
the common sparsity of the channel space domain was combined while using the feature of lower sparsity of adjacent time slot differential channel impulse response (CIR)
which leaded to a significant reduction in pilot overhead.In the reconstruction algorithm
a two-stage differential estimation algorithm
which divided the channel estimation in consecutive time slots with time correlation into two stages
was proposed and the idea of adaptive compressed sensing was combined to achieve fast and accurate CIR estimate.The simulation results show that the proposed two-stage differential channel estimation algorithm not only has a significant improvement in the estimated NMSE performance and data transmission rate compared to the existing CS-based multiple measurement vector (MMV) algorithm
but also show a certain reduction in runtime complexity.
物联网大规模多输入多输出压缩感知信道估计稀疏度自适应差分信道冲激响应
Internet of thingsmassive MIMOcompressed sensingchannel estimationsparsity adaptivedifferential CIR
余文科, 程媛, 李芳 ,等. 物联网技术发展分析与建议[J]. 物联网学报, 2020,4(4): 105-109.
YU W K, CHENG Y, LI F ,et al. Analysis and suggestions on the development of IoT technology[J]. Chinese Journal on Internet of Things, 2020,4(4): 105-109.
CHOUDHURY P K, ABOU EL-NASR M . Massive MIMO toward 5G[J]. Journal of Electromagnetic Waves and Applications, 2020,34(9): 1091-1094.
KULIKOV G V, TAMBOVSKII S S, SAVVATEEV Y I ,et al. Algorithm for recovery of reciprocity of a wireless communications channel in MIMO systems[J]. Journal of Communications Technology and Electronics, 2019,64(2): 133-139.
ALI A, MAGARINI M, PIRZADA N ,et al. Direction of arrival and least square error technique used in massive MIMO for channel estimation[J]. International Journal of Mathematics and Computer Science, 2021,16(2): 647-657.
廖勇, 姚海梅, 花远肖 . 一种基于深度学习的物联网信道状态信息获取算法[J]. 物联网学报, 2019,3(1): 8-13.
LIAO Y, YAO H M, HUA Y X . Channel state information acquisition algorithm based on deep learning for IoT[J]. Chinese Journal on Internet of Things, 2019,3(1): 8-13.
AKBARPOUR-KASGARI A, ARDEBILIPOUR M . Massive MIMO-OFDM channel estimation via distributed compressed sensing[J]. IEEE Wireless Communications Letters, 2019,8(2): 376-379.
DONOHO D L . Compressed sensing[J]. IEEE Transactions on Information Theory, 2006,52(4): 1289-1306.
TROPP J A, GILBERT A C . Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007,53(12): 4655-4666.
JAYANTHI P N, RAVISHANKAR S . Model-based compressed sensing algorithms for MIMO-OFDM channel estimation[J]. International Journal of Engineering & Technology, 2018,7(2): 5-9.
GE L J, ZHANG Y, CHEN G J ,et al. Compression-based LMMSE channel estimation with adaptive sparsity for massive MIMO in 5G systems[J]. IEEE Systems Journal, 2019,13(4): 3847-3857.
RAO X, LAU V K N . Distributed compressive CSIT estimation and feedback for FDD multi-user massive MIMO systems[J]. IEEE Transactions on Signal Processing, 2014,62(12): 3261-3271.
ZHANG R Y, ZHAO H L, JIA S B ,et al. Joint channel estimation algorithm based on structured compressed sensing for FDD multi-user massive MIMO[C]// Proceedings of IEEE 13th International Conference on Signal Processing (ICSP). Piscataway of IEEE, 2016: 1202-1207.
GAO Z, DAI L L, DAI W ,et al. Structured compressive sensing based spatio-temporal joint channel estimation for FDD massive MIMO[J]. IEEE Transactions on Communications, 2016,64(2): 601-617.
FAN Y J, LI H, SONG S S ,et al. Structured compressed sensing-based time-frequency joint channel estimation for MIMO-OFDM systems[C]// Proceedings of 13th IEEE Conference on Industrial Electronics and Applications (ICIEA). Piscataway:IEEE Press, 2018: 2006-2010.
SHEN W Q, DAI L L, SHI Y ,et al. Joint channel training and feedback for FDD massive MIMO systems[J]. IEEE Transactions on Vehicular Technology, 2016,65(10): 8762-8767.
戈立军, 郭徽, 李月 ,等. 大规模MIMO系统稀疏度自适应信道估计算法[J]. 通信学报, 2017,38(12): 57-62.
GE L J, GUO H, LI Y ,et al. Sparsity adaptive channel estimation algorithm based on compressive sensing for massive MIMO systems[J]. Journal on Communications, 2017,38(12): 57-62.
GAO Z, DAI L L, WANG Z C . Structured compressive sensing based superimposed pilot design in downlink large-scale MIMO systems[J]. Electronics Letters, 2014,50(12): 896-898.
ZHU X D, DAI L L, GUI G ,et al. Structured matching pursuit for reconstruction of dynamic sparse channels[C]// Proceedings of IEEE Global Communications Conference:Wireless Communications. Piscataway:IEEE Press, 2015: 1-5.
BADDOUR K E, BEAULIEU N C . Autoregressive modeling for fading channel simulation[J]. IEEE Transactions on Wireless Communications, 2005,4(4): 1650-1662.
KUO P H, KUNG H T, TING P G . Compressive sensing based channel feedback protocols for spatially-correlated massive antenna arrays[C]// Proceedings of IEEE Wireless Communications and Networking Conference (WCNC). Piscataway:IEEE Press, 2012: 492-497.
DAI L L, WANG J T, WANG Z C ,et al. Spectrum- and energy-efficient OFDM based on simultaneous multi-channel reconstruction[J]. IEEE Transactions on Signal Processing, 2013,61(23): 6047-6059.
NOH S, ZOLTOWSKI M D, SUNG Y ,et al. Pilot beam pattern design for channel estimation in massive MIMO systems[J]. IEEE Journal of Selected Topics in Signal Processing, 2014,8(5): 787-801.
CHOI J, LOVE D J, BIDIGARE P . Downlink training techniques for FDD massive MIMO systems:open-loop and closed-loop training with memory[J]. IEEE Journal of Selected Topics in Signal Processing, 2014,8(5): 802-814.
0
浏览量
442
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构