浏览全部资源
扫码关注微信
1. 华东交通大学信息工程学院,江西 南昌 330031
2. 东南大学信息科学与工程学院,江苏 南京 210096
3. 青岛大学,山东 青岛 266000
[ "姚誉(1986− ),男,博士,华东交通大学信息工程学院副教授,主要研究方向为车联网、雷达通信网、优化算法、智能信号处理等" ]
[ "李妍洁(1985− ),女,华东交通大学信息工程学院硕士生,主要研究方向为车联网、最优化理论、智能信号处理等" ]
[ "吴乐南(1952− ),男,东南大学信息科学与工程学院教授,主要研究方向为物联网技术、车联网、多媒体信息处理、信号检测与估计等" ]
[ "苗圃(1985− ),男,青岛大学讲师,主要研究方向为物联网技术、车联网、最优化理论、信号检测与估计等" ]
[ "唐小渝(1999− ),女,华东交通大学信息工程学院在读,主要研究方向为车联网、最优化理论、智能信号处理等" ]
纸质出版日期:2021-12-30,
网络出版日期:2021-12,
移动端阅览
姚誉, 李妍洁, 吴乐南, 等. 面向车联网的认知雷达通信复合波形设计[J]. 物联网学报, 2021,5(4):71-80.
YU YAO, YANJIE LI, LENAN WU, et al. Cognitive waveform design for radar-communication transceiver networks. [J]. Chinese journal on internet of things, 2021, 5(4): 71-80.
姚誉, 李妍洁, 吴乐南, 等. 面向车联网的认知雷达通信复合波形设计[J]. 物联网学报, 2021,5(4):71-80. DOI: 10.11959/j.issn.2096-3750.2021.00232.
YU YAO, YANJIE LI, LENAN WU, et al. Cognitive waveform design for radar-communication transceiver networks. [J]. Chinese journal on internet of things, 2021, 5(4): 71-80. DOI: 10.11959/j.issn.2096-3750.2021.00232.
介绍了认知雷达通信(CRC)收发器的系统架构,提出了一种认知雷达通信复合波形的设计方法。此方法旨在从雷达场景中估计目标散射系数(TSC),同时实现高速率数据通信。为了降低TSC的均方误差(MSE),建立了在实际雷达系统多约束条件下的认知复合波形优化模型。通过基于卡尔曼滤波的方法设计超宽带(UWB)传输脉冲集,并利用多元位置相移键控调制技术(MPPSK)将信息数据嵌入其中,从而实现峰均功率比(PAPR)约束的最佳解决方案。实验结果证明,随着迭代次数的增加,TSC 估计和目标检测概率均有所提高。同时,在CRC收发系统之间仍能够以低误码率和速率为几Mbit/s的范围内传输数据。
The system architecture for cognitive radar-communication (CRC) transceiver was proposed.A cognitive waveforms design approach
which is suitable for simultaneously performing both data communication and target detection was presented.This approach aims at estimating target scattering coefficient (TSC) from the radar scene and facilitating high-data-rate communications.In order to minimize the mean square error (MSE) of the TSC
a convex cost function was established.The peak to average power ratio (PAPR)-constrained optimal solution was achieved by applying the Kalman filtering-based strategy to design the set of ultra-wideband (UWB) transmission pulses and embed into them the information data with the M-ary position phase shift keying modulation technique.In addition to theoretical considerations
the simulation results show an improvement in TSC estimation and target detection probability as the number of iterations increases
while still transmitting data rates in the range of several Mbit/s with low bit error rates between CRC transceivers.
雷达通信网目标检测超宽带车联网认知波形设计
radar communication networktarget detectionUWBInternet of vehiclescognitive waveform design
BLISS D W, . Cooperative radar and communications signaling:the estimation and information theory odd couple[C]// Proceedings of 2014 IEEE Radar Conference. Piscataway:IEEE Press, 2014: 50-55.
GUERCI J R, GUERCI R M, LACKPOUR A ,et al. Joint design and operation of shared spectrum access for radar and communications[C]// Proceedings of 2015 IEEE Radar Conference (RadarCon). Piscataway:IEEE Press, 2015: 761-766.
CHIRIYATH A R, PAUL B, JACYNA G M ,et al. Inner bounds on performance of radar and communications co-existence[J]. IEEE Transactions on Signal Processing, 2016,64(2): 464-474.
CHIRIYATH A R, PAUL B, BLISS D W . Joint radar-communications information bounds with clutter:the phase noise menace[C]// Proceedings of 2016 IEEE Radar Conference (RadarConf). Piscataway:IEEE Press, 2016: 1-6.
KWAK J S, LEE J H . Infrared transmission for intervehicle ranging and vehicle-to-roadside communication systems using spread-spectrum technique[J]. IEEE Transactions on Intelligent Transportation Systems, 2004,5(1): 12-19.
HASSANIEN A, AMIN M G, ZHANG Y D ,et al. Dual-function radar-communications:information embedding using sidelobe control and waveform diversity[J]. IEEE Transactions on Signal Processing, 2016,64(8): 2168-2181.
HAN L, WU K . 24-GHz integrated radio and radar system capable of time-agile wireless communication and sensing[J]. IEEE Transactions on Microwave Theory and Techniques, 2012,60(3): 619-631.
SABHARWAL A, SCHNITER P, GUO D N ,et al. In-band full-duplex wireless:challenges and opportunities[J]. IEEE Journal on Selected Areas in Communications, 2014,32(9): 1637-1652.
TAKASE H, SHINRIKI M . A dual-use radar and communication system with complete complementary codes[C]// Proceedings of 2014 15th International Radar Symposium (IRS). Piscataway:IEEE Press, 2014: 1-4.
CIUONZO D, DE MAIO A, FOGLIA G ,et al. Intrapulse radar-embedded communications via multiobjective optimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015,51(4): 2960-2974.
SIT Y L, ZWICK T . MIMO OFDM radar with communication and interference cancellation features[C]// Proceedings of 2014 IEEE Radar Conference. Piscataway:IEEE Press, 2014: 265-268.
STURM C, ZWICK T, WIESBECK W . An OFDM system concept for joint radar and communications operations[C]// Proceedings of VTC Spring 2009 - IEEE 69th Vehicular Technology Conference. Piscataway:IEEE Press, 2009: 1-5.
SEN S . PAPR-constrained Pareto-optimal waveform design for OFDM-STAP radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013,52(6): 3658-3669.
CAILEAN A, CAGNEAU B, CHASSAGNE L ,et al. Visible light communications:application to cooperation between vehicles and road infrastructures[C]// Proceedings of 2012 IEEE Intelligent Vehicles Symposium. Piscataway:IEEE Press, 2012: 1055-1059.
NIJSURE Y, CHEN Y F, BOUSSAKTA S ,et al. Novel system architecture and waveform design for cognitive radar radio networks[J]. IEEE Transactions on Vehicular Technology, 2012,61(8): 3630-3642.
SHEN Y S, UENG F B, CHEN J D ,et al. A performance analysis of the high-capacity TH multiple access UWB system using PPM[C]// Proceedings of 2009 IEEE 20th International Symposium on Personal,Indoor and Mobile Radio Communications. Piscataway:IEEE Press, 2009: 2454-2458.
KOKKALIS N V, MATHIOPOULOS P T, KARAGIANNIDIS G K ,et al. Performance analysis of M-ary PPM TH-UWB systems in the presence of MUI and timing jitter[J]. IEEE Journal on Selected Areas in Communications, 2006,24(4): 822-828.
GONG X H, MENG H D, WEI Y M ,et al. Phase-modulated waveform design for extended target detection in the presence of clutter[J]. Sensors (Basel,Switzerland), 2011,11(7): 7162-7177.
HAYKIN S . Cognitive radar:a way of the future[J]. IEEE Signal Processing Magazine, 2006,23(1): 30-40.
CHEN Y, RAPAJIC P . Ultra-wideband cognitive interrogator network:adaptive illumination with active sensors for target localisation[J]. IET Communications, 2010,4(5): 573.
DENG X, QIU C, CAO Z ,et al. Waveform design for enhanced detection of extended target in signal-dependent interference[J]. IET Radar,Sonar & Navigation, 2012,6(1): 30.
CHEN P, WU L N . Waveform design for multiple extended targets in temporally correlated cognitive radar system[J]. IET Radar,Sonar &Navigation, 2016,10(2): 398-410.
SEN S, GLOVER C W . Optimal multicarrier phase-coded waveform design for detection of extended targets[C]// Proceedings of 2013 IEEE Radar Conference (RadarCon13). Piscataway:IEEE Press, 2013: 1-6.
ZHANG X, CUI C . Range-spread target detecting for cognitive radar based on track-before-detect[J]. International Journal of Electronics, 2014,101(1): 74-87.
PATTON L K, FROST S W, RIGLING B D . Efficient design of radar waveforms for optimised detection in coloured noise[J]. IET Radar,Sonar & Navigation, 2012,6(1): 21.
SEN S . Characterizations of PAPR-constrained radar waveforms for optimal target detection[J]. IEEE Sensors Journal, 2014,14(5): 1647-1654.
ROMERO R A, GOODMAN N A . Waveform design in signal-dependent interference and application to target recognition with multiple transmissions[J]. IET Radar,Sonar & Navigation, 2009,3(4): 328.
THOMPSON S C, STRALKA J P . Constant envelope OFDM for power-efficient radar and data communications[C]// Proceedings of 2009 International Waveform Diversity and Design Conference. Piscataway:IEEE Press, 2009: 291-295.
NIJSURE Y, CHEN Y, RAPAJIC P ,et al. Information-theoretic algorithm for waveform optimization within ultra wideband cognitive radar network[C]// Proceedings of 2010 IEEE International Conference on Ultra-Wideband. Piscataway:IEEE Press, 2010: 1-4.
GOODMAN N A, VENKATA P R, NEIFELD M A . Adaptive waveform design and sequential hypothesis testing for target recognition with active sensors[J]. IEEE Journal of Selected Topics in Signal Processing, 2007,1(1): 105-113.
FAN M M, LIAO D P, DING X F ,et al. Waveform design for target recognition on the background of clutter[C]// Proceedings of 2011 8th European Radar Conference. Piscataway:IEEE Press, 2011: 329-332.
DAI F Z, LIU H W, WANG P H ,et al. Adaptive waveform design for range-spread target tracking[J]. Electronics Letters, 2010,46(11): 793.
JIU B, LIU H W, ZHANG L ,et al. Wideband cognitive radar waveform optimization for joint target radar signature estimation and target detection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015,51(2): 1530-1546.
LESHEM A, NAPARSTEK O, NEHORAI A . Information theoretic adaptive radar waveform design for multiple extended targets[J]. IEEE Journal of Selected Topics in Signal Processing, 2007,1(1): 42-55.
张鑫, 崔琛, 余剑 . 信号相关杂波环境中的认知雷达多扩展目标跟踪[J]. 电路与系统学报, 2013,18(2): 492-499.
ZHANG X, CUI C, YU J . Multiple extended targets tracking for cognitive radar in the presence of signal-dependent clutter[J]. Journal of Circuits and Systems, 2013,18(2): 492-499.
SEN S, NEHORAI A . OFDM MIMO radar with mutual-information waveform design for low-grazing angle tracking[J]. IEEE Transactions on Signal Processing, 2010,58(6): 3152-3162.
HUANG T Y, ZHAO T . Low PMEPR OFDM radar waveform design using the iterative least squares algorithm[J]. IEEE Signal Processing Letters, 2015,22(11): 1975-1979.
YAO Y, LIU H T, WU L N . Robust transmit waveform and receive filter design in the presence of eclipsing loss and signal-dependent interference[J]. Signal Processing, 2021,181: 107901.
0
浏览量
284
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构