浏览全部资源
扫码关注微信
1. 东北大学流程工业综合自动化国家重点实验室,辽宁 沈阳 110819
2. 宝山钢铁股份有限公司中央研究院,上海 201900
[ "马宇飞(1996- ),男,东北大学硕士生,主要研究方向为工业大数据技术及其应用等" ]
[ "刘长鑫(1983- ),男,博士,东北大学讲师,主要研究方向为自动化技术、计算机软件及计算机应用等" ]
[ "孔伟(1984- ),男,宝山钢铁股份有限公司中央研究院高级工程师,主要研究方向为宽厚板轧制工艺及大数据应用" ]
[ "丁进良(1976- ),男,博士,东北大学教授,主要研究方向为复杂工业过程智能建模与智能优化与控制、生产全流程运行优化、工业大数据分析、机器学习、计算智能及其应用研究等" ]
纸质出版日期:2021-09-30,
网络出版日期:2021-09,
移动端阅览
马宇飞, 刘长鑫, 孔伟, 等. 基于工业大数据的厚板板形预报系统研发[J]. 物联网学报, 2021,5(3):39-48.
YUFEI MA, CHANGXIN LIU, WEI KONG, et al. Research and development of thick plate shape prediction system based on industrial big data. [J]. Chinese journal on internet of things, 2021, 5(3): 39-48.
马宇飞, 刘长鑫, 孔伟, 等. 基于工业大数据的厚板板形预报系统研发[J]. 物联网学报, 2021,5(3):39-48. DOI: 10.11959/j.issn.2096-3750.2021.00239.
YUFEI MA, CHANGXIN LIU, WEI KONG, et al. Research and development of thick plate shape prediction system based on industrial big data. [J]. Chinese journal on internet of things, 2021, 5(3): 39-48. DOI: 10.11959/j.issn.2096-3750.2021.00239.
厚板板形是衡量厚板产品质量的重要指标之一,生产中最终板形的及时预报对于调整厚板生产操作与控制具有重要的意义。实际工业生产中,厚板数据具有耦合信息多、冗余信息量大、数据呈现多源异构性等特点,结合厚板板形预报的需求,设计并开发了厚板板形预报系统。利用数据转存功能,对工业大数据进行数据过滤和数据预处理,去除数据中的耦合信息和冗余变量。利用LSTM神经网络、卷积神经网络以及3D卷积神经网络对不同维度的数据分别提取数据特征,基于最大互信息系数将特征进行融合建立集成学习预报模型,有效地解决了多源异构数据所带来的建模困难。采用国内某厚板生产线的实际工业数据进行验证,结果证明了所开发系统的有效性。
Thick plate shape is one of the important indicators to measure the quality of thick plate products.The timely prediction of the final plate shape in production is of great significance for adjusting the operation and control of thick plate production.In actual industrial production
thick plate data has many characteristics
such as multiple coupling information
large amount of redundant information
and multi-source heterogeneity of data.Combining the needs of thick plate shape prediction
a thick plate shape prediction system was designed and developed.The data dump function was used to filter and preprocess the industrial big data to remove the coupling information and redundant variables in the data.LSTM neural network
convolutional neural network and 3D convolutional neural network were used to extract data features from data of different dimensions
and the features were fused based on the maximum mutual information coefficient to establish an integrated learning prediction model
which effectively solved the modeling difficulties caused by multi-source heterogeneous data.The actual industrial data of a domestic thick plate production line was used for verification
and the results showed the effectiveness of the developed system.
厚板板形预报模型多源异构数据系统开发
thick plate shapeprediction modelmulti-source heterogeneous datasystem development
SCHAUSBERGER F, STEINBOECK A, KUGI A . Optimization-based reduction of contour errors of heavy plates in hot rolling[J]. Journal of Process Control, 2016,47: 150-160.
XIE B S, CAI Q W, YUN Y ,et al. Development of high strength ultra-heavy plate processed with gradient temperature rolling,intercritical quenching and tempering[J]. Materials Science and Engineering:A, 2017,680: 454-468.
MA X B, LIU H M, SUN J L ,et al. Impact of main drive system of 5 m wide and heavy plate mill on screw-down load deviation[J]. Engineering Failure Analysis, 2017,79: 913-927.
王国栋 . 高质量中厚板生产关键共性技术研发现状和前景[J]. 轧钢, 2019,36(1): 1-8,30.
WANG G D . Status and prospects of research and development of key common technologies for high-quality heavy and medium plate production[J]. Steel Rolling, 2019,36(1): 1-8,30.
LAUGWITZ M, SEUREN S, JOCHUM M ,et al. Development of levelling strategies for heavy plates via controlled FE models[J]. Procedia Engineering, 2017,207: 1349-1354.
SCHAUSBERGER F, STEINBOECK A, KUGI A . Feedback control of the contour shape in heavy-plate hot rolling[J]. IEEE Transactions on Control Systems Technology, 2018,26(3): 842-856.
YU W, LI G S, CAI Q W . Effect of a novel gradient temperature rolling process on deformation,microstructure and mechanical properties of ultra-heavy plate[J]. Journal of Materials Processing Technology, 2015,217: 317-326.
BASANTA-VAL P . An efficient industrial big-data engine[J]. IEEE Transactions on Industrial Informatics, 2018,14(4): 1361-1369.
WANG T, KE H X, ZHENG X ,et al. Big data cleaning based on mobile edge computing in industrial sensor-cloud[J]. IEEE Transactions on Industrial Informatics, 2020,16(2): 1321-1329.
焦四海, 丁建华, 闫博 ,等. 厚板数据中心和智能制造的实践与探索[J]. 宝钢技术, 2020(6): 8-15.
JIAO S H, DING J H, YAN B ,et al. Practice and exploration data center and intelligent manufacture of plate mill[J]. Baosteel Technology, 2020(6): 8-15.
GUO K H, XU T, KUI X Y ,et al. iFusion:towards efficient intelligence fusion for deep learning from real-time and heterogeneous data[J]. Information Fusion, 2019,51: 215-223.
NGUYEN T T, PHAM X C, LIEW A W C ,et al. Aggregation of classifiers:a justifiable information granularity approach[J]. IEEE Transactions on Cybernetics, 2019,49(6): 2168-2177.
王国栋 . 近年我国轧制技术的发展、现状和前景[J]. 轧钢, 2017,34(1): 1-8.
WANG G D . Development,current situation and prospect of Chinese steel rolling technology in recent years[J]. Steel Rolling, 2017,34(1): 1-8.
GENG D Q, ZHANG C Y, XIA C J ,et al. Big data-based improved data acquisition and storage system for designing industrial data platform[J]. IEEE Access, 2019,7: 44574-44582.
FABLET R, VIET P H, LGUENSAT R . Data-driven models for the spatio-temporal interpolation of satellite-derived SST fields[J]. IEEE Transactions on Computational Imaging, 2017,3(4): 647-657.
JIANG X X, PAN S R, LONG G D ,et al. Cost-sensitive parallel learning framework for insurance intelligence operation[J]. IEEE Transactions on Industrial Electronics, 2019,66(12): 9713-9723.
LEE S Y, TAMA B A, CHOI C ,et al. Spatial and sequential deep learning approach for predicting temperature distribution in a steel-making continuous casting process[J]. IEEE Access, 2020,8: 21953-21965.
RESHEF D N, RESHEF Y A, FINUCANE H K ,et al. Detecting novel associations in large data sets[J]. Science, 2011,334(6062): 1518-1524.
ZHANG K, LIU N, YUAN X F ,et al. Fine-grained age estimation in the wild with attention LSTM networks[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020,30(9): 3140-3152.
CAO H C, LIU H, SONG E M ,et al. Multi-branch ensemble learning architecture based on 3D CNN for false positive reduction in lung nodule detection[J]. IEEE Access, 2019,7: 67380-67391.
0
浏览量
561
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构