1. 杭州电子科技大学电子信息学院射频电路与系统教育部重点实验室,浙江 杭州 310018
2. 浙江大学信息与电子工程学院,浙江 杭州 310027
[ "石林豪(1997− ),男,杭州电子科技大学电子信息学院硕士生,主要研究方向为薄膜体声波谐振器" ]
[ "轩伟鹏(1990− ),男,博士,杭州电子科技大学副教授,主要研究方向为压电MEMS器件、薄膜体声波器件及其在传感器、滤波器等领域的基础理论与应用" ]
[ "孙玲玲(1956− ),女,杭州电子科技大学教授、射频电路与系统教育部重点实验室主任,主要研究方向为微波毫米波集成电路与智能系统设计" ]
[ "董树荣(1973− ),男,浙江大学教授,主要研究方向为MEMS、智能传感、柔性电子" ]
[ "金浩(1979− ),男,浙江大学副教授,主要研究方向为MEMS、医疗电子" ]
[ "骆季奎(1960− ),男,浙江大学教授,主要研究方向为智能传感器,纳米发电机,基于表面声波的微流体器件、微泵、微混合器、传感器等" ]
纸质出版日期:2022-03-30,
网络出版日期:2022-03,
移动端阅览
石林豪, 轩伟鹏, 孙玲玲, 等. 基于二维声子晶体的体声波谐振器仿真分析[J]. 物联网学报, 2022,6(1):13-19.
LINHAO SHI, WEIPENG XUAN, LINGLING SUN, et al. Simulation of film bulk acoustic resonator based on two-dimensional phononic crystals. [J]. Chinese journal on internet of things, 2022, 6(1): 13-19.
石林豪, 轩伟鹏, 孙玲玲, 等. 基于二维声子晶体的体声波谐振器仿真分析[J]. 物联网学报, 2022,6(1):13-19. DOI: 10.11959/j.issn.2096-3750.2022.00251.
LINHAO SHI, WEIPENG XUAN, LINGLING SUN, et al. Simulation of film bulk acoustic resonator based on two-dimensional phononic crystals. [J]. Chinese journal on internet of things, 2022, 6(1): 13-19. DOI: 10.11959/j.issn.2096-3750.2022.00251.
提出了一种基于声子晶体的新型体声波谐振器结构,利用声子晶体在其带隙范围内对弹性波具有高反射率、低透射率的特点,将声子晶体作为体声波谐振器底部的声反射层。首先计算出了4种不同结构声子晶体的带隙特性,并使用有限元软件COMSOL Multiphysics对基于声子晶体的体声波谐振器结构进行建模仿真,得出了主要结论。当体声波谐振器工作频率在声子晶体带隙范围内时,直接以声子晶体作为体声波谐振器的衬底,仿真得到的阻抗曲线较为平滑,且Q值为858.09,有效机电耦合系数为6.32%。
A new structure of film bulk acoustic resonator (FBAR) based on phononic crystal (PnC) was proposed.The phononic crystal was used as the acoustic reflection layer at the bottom of the bulk acoustic wave resonator
which has the characteristics of high reflectivity and low transmittance of elastic wave in its band gap.The band gap characteristics of four kinds of phononic crystals with different structures were calculated by the finite element software COMSOL Multiphysics.The main conclusions are as follows.If the bulk acoustic resonator is working within the band gap of the phononic crystal
PnC can be used as the bottom acoustic reflection layer of the FBAR.With using PnC as the acoustic energy reflect structure
the impedance curve of FBAR is smooth
and the quality factor is closed to traditional FBAR with a value of 859 and effective mechanical coupling coefficient of 6.32%.
体声波谐振器高反射率声子晶体有限元分析
film bulk acoustic resonatorhigh reflectivityphononic crystalfinite element analysis
谢和平, 张树人, 杨成韬 ,等. 薄膜体声波谐振器的研究进展[J]. 材料导报, 2006,20(S2): 330-332.
XIE H P, ZHANG S R, YANG C T ,et al. Research progress in film bulk acoustic resonator[J]. Materials Review, 2006,20(S2): 330-332.
韩东, 胡顺欣, 冯彬 ,等. Si 基薄膜体声波谐振器(FBAR)技术研究[J]. 半导体技术, 2012,37(6): 456-459,469.
HAN D, HU S X, FENG B ,et al. Study on silicon-based film bulk acoustic resonator (FBAR) technology[J]. Semiconductor Technology, 2012,37(6): 456-459,469.
焦向全 . 体声波谐振器空腔结构研究[D]. 成都:电子科技大学, 2015.
JIAO X Q . Research on cavity structure of film bulk acoustic resonator[D]. Chengdu:University of Electronic Science and Technology of China, 2015.
杨泰, 张根, 秦康宁 ,等. 一种基于柔性基底的薄膜体声波谐振器[J]. 压电与声光, 2018,40(6): 901-904.
YANG T, ZHANG G, QIN K N ,et al. A thin film bulk acoustic resonator based on flexible substrate[J]. Piezoelectrics & Acoustooptics, 2018,40(6): 901-904.
GARCIA-RAFFI L M, SALMERÓN-CONTRERAS L J, HERRERO-DURÁ I ,et al. Broadband reduction of the specular reflections by using sonic crystals:a proof of concept for noise mitigation in aerospace applications[J]. Aerospace Science and Technology, 2018,73: 300-308.
WU T T, WU L C, HUANG Z G . Frequency band-gap measurement of two-dimensional air/silicon phononic crystals using layered slanted finger interdigital transducers[J]. Journal of Applied Physics, 2005,97(9): 094916.
SIDDIQI M, LEE J . AlN-on-Si MEMS resonator bounded by wide acoustic bandgap two-dimensional phononic crystal anchors[M]. 2018.
TONG Y J, HAN T . Anchor loss reduction of lamb wave resonator by pillar-based phononic crystal[J]. Micromachines, 2021,12(1): 62.
TU C, LEE J E Y, ZHANG X S . Dissipation analysis methods and Q-enhancement strategies in piezoelectric MEMS laterally vibrating resonators:areview[J]. Sensors, 2020,20(17): 4978.
LI Y, LIANG B, ZOU X Y ,et al. Extraordinary acoustic transmission through ultrathin acoustic metamaterials by coiling up space[J]. Applied Physics Letters, 2013,103(6): 063509.
WANG T, WANG H, SHENG M P ,et al. Complete low-frequency bandgap in a two-dimensional phononic crystal with spindle-shaped inclusions[J]. Chinese Physics B, 2016,25(4): 046301.
鄂羽佳 . SMR 全绝缘布拉格反射栅的设计、制备与表征[D]. 哈尔滨:哈尔滨工业大学, 2019.
E Y J . Design,fabrication and characterization of SMR fully insulated Bragg reflector[D]. Harbin:Harbin Institute of Technology, 2019.
ZHU X, XIAO Y, WEN J, YU D ,et al. Flexural wave band gaps and vibration reduction properties of a locally resonant stiffened plate (In Chinese)[EB]. 2016.
NGUYEN N, JOHANNESSEN A, ROOTH S ,et al. A design approach for high-Q FBARs with a dual-step frame[J]. IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control, 2018,65(9): 717-1725.
刘松, 罗春荣, 翟世龙 ,等. 负质量密度声学超材料的反常多普勒效应[J]. 物理学报, 2017,66(2): 024301.
LIU S, LUOC R, ZHAI S L ,et al. Inverse Doppler effect of acoustic metamaterial with negative mass density[J]. Acta Physica Sinica, 2017,66(2): 024301.
0
浏览量
283
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构