浏览全部资源
扫码关注微信
1. 清华大学集成电路学院,北京 100084
2. 清华大学北京信息科学与技术国家研究中心,北京 100084
3. 加州大学伯克利分校电气工程与计算机科学系,美国 伯克利 94720
4. 清华大学深圳国际研究生院,广东 深圳 518055
5. 清华大学柔性电子技术研究中心,北京 100084
[ "徐建东(1995− ),男,清华大学集成电路学院博士生,主要研究方向为智能可穿戴电子器件与系统" ]
[ "李睿嵩(1999− ),女,加州大学伯克利分校电气工程与计算机科学系在读,主要研究方向为智能微纳电子器件" ]
[ "常昊(1999− ),男,清华大学集成电路学院硕士生,主要研究方向为柔性传感器与可穿戴设备" ]
[ "杨轶(1978− ),男,博士,清华大学集成电路学院副教授、博士生导师,主要研究方向为二维纳电子器件、纳米声学器件、集成谐振器件、柔性电子器件及其应用系统等" ]
[ "张盛(1975− ),男,博士,清华大学深圳国际研究生院副教授、博士生导师,主要研究方向为通信及系统集成、图像及运动传感、区块链、面向物联网的操作系统等" ]
[ "任天令(1971− ),男,博士,清华大学集成电路学院教授、博士生导师,清华大学信息科学技术学院副院长,清华大学环境与健康传感技术研究中心副主任,主要研究方向为新型二维电子器件与集成系统、先进智能芯片与系统、智能传感器与集成微系统等" ]
纸质出版日期:2022-03-30,
网络出版日期:2022-03,
移动端阅览
徐建东, 李睿嵩, 常昊, 等. 智能隐形眼镜的研究进展与挑战[J]. 物联网学报, 2022,6(1):1-12.
JIANDONG XU, RUISONG LI, HAO CHANG, et al. Recent progresses and challenges in smart contact lens. [J]. Chinese journal on internet of things, 2022, 6(1): 1-12.
徐建东, 李睿嵩, 常昊, 等. 智能隐形眼镜的研究进展与挑战[J]. 物联网学报, 2022,6(1):1-12. DOI: 10.11959/j.issn.2096-3750.2022.00252.
JIANDONG XU, RUISONG LI, HAO CHANG, et al. Recent progresses and challenges in smart contact lens. [J]. Chinese journal on internet of things, 2022, 6(1): 1-12. DOI: 10.11959/j.issn.2096-3750.2022.00252.
随着物联网技术的发展,隐形眼镜不仅仅局限于视力矫正,已成为智能可穿戴设备的新兴领域,并且随着“元宇宙”概念的提出,增强现实(AR,augmented reality)技术再次成为科技主流发展方向。全面综述了智能隐形眼镜在泪液生理信号监测、眼压监测、眼动追踪和增强现实4个方面关键技术的最新研究进展以及智能隐形眼镜的能量供应方案,并对智能隐形眼镜在智慧医疗和增强现实等方面的未来发展方向进行了展望。未来,智能隐形眼镜将实现甚至超越智能手机的功能,其显示可以通过眼球的运动控制来浏览各种信息,如消息、天气、生物标记物水平等。因此,智能隐形眼镜将在智慧医疗健康和元宇宙领域发挥重要的作用。
With advances in the Internet of things
contact lenses not only are limited to vision correction
but also have become an emerging field of the smart wearable device.And with the proposal of the concept of “meta universe”
augmented reality (AR) technology has once again become the mainstream development direction of science and technology.The latest research progress of key technologies of smart contact lenses in physiological signal monitoring
intraocular pressure monitoring
eye-movement tracking
and augmented reality
as well as the energy supply scheme of the contact lenses were summarized comprehensively.And the future development direction of smart contact lenses in intelligent health and augmented reality was looked forward.In the future
smart contact lenses will realize or surpass the functions of smartphone.Their displays can be controlled by eye movement
which enables us to browse various information
such as news
weather
biomarker level
etc.Therefore
the smart contact lens will play an important role in intelligent medical health and meta universe.
智能隐形眼镜生理信号眼压监测眼动追踪增强现实智慧医疗
smart contact lensphysiological signalintraocular pressure monitoringeye-movement trackingaugmented realityintelligent medical health
JIANG N, MONTELONGO Y, BUTT H ,et al. Microfluidic contact lenses[J]. Small, 2018,14(15): 1704363.
BADUGU R, REECE E A, LAKOWICZ J R . Glucose-sensitive silicone hydrogel contact lens toward tear glucose monitoring[J]. Journal of Biomedical Optics, 2018,23: 057005.
BADUGU R, JENG B H, REECE E A ,et al. Contact lens to measure individual ion concentrations in tears and applications to dry eye disease[J]. Analytical Biochemistry, 2018,542: 84-94.
PARK J, KIM J, KIM S Y ,et al. Soft,smart contact lenses with integrations of wireless circuits,glucose sensors,and displays[J]. Science Advances, 2018,4(1): eaap9841.
LIN Y R, HUNG C C, CHIU H Y ,et al. Noninvasive glucose monitoring with a contact lens and smartphone[J]. Sensors, 2018,18(10): 3208.
KEUM D H, KIM S K, KOO J ,et al. Wireless smart contact lens for diabetic diagnosis and therapy[J]. Science Advances, 2020,6(17): eaba3252.
JANG J, KIM J, SHIN H ,et al. Smart contact lens and transparent heat patch for remote monitoring and therapy of chronic ocular surface inflammation using mobiles[J]. Science Advances, 2021,7(14): eabf7194.
KIM J, CHA E, PARK J U . Recent advances in smart contact lenses[J]. Advanced Materials Technologies, 2020,5(1): 1900728.
CHU M X, MIYAJIMA K, TAKAHASHI D ,et al. Soft contact lens biosensor for in situ monitoring of tear glucose as non-invasive blood sugar assessment[J]. Talanta, 2011,83(3): 960-965.
IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields,3 kHz to 300 GHz[J]. IEEE Std C95 1-1991, 1992: 1-76.
KIM J, KIM M, LEE M S ,et al. Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics[J]. Nature Communications, 2017>,8: 14997.
HUI A . Contact lenses for ophthalmic drug delivery[J]. Clinical and Experimental Optometry, 2017,100(5): 494-512.
ELSHERIF M, HASSAN M U, YETISEN A K ,et al. Wearable contact lens biosensors for continuous glucose monitoring using smartphones[J]. ACS Nano, 2018,12(6): 5452-5462.
TSENG R, CHEN C C, HSU S M ,et al. Contact-lens biosensors[J]. Sensors, 2018,18(8): 2651.
CHEN C, DONG Z Q, SHEN J H ,et al. 2D photonic crystal hydrogel sensor for tear glucose monitoring[J]. ACS Omega, 2018,3(3): 3211-3217.
HUGHES E, SPRY P, DIAMOND J . 24-hour monitoring of intraocular pressure in glaucoma management:a retrospective review[J]. Journal of Glaucoma, 2003,12(3): 232-236.
AGAOGLU S, DIEP P, MARTINI M ,et al. Ultra-sensitive microfluidic wearable strain sensor for intraocular pressure monitoring[J]. Lab on a Chip, 2018,18(22): 3471-3483.
PANG Y, LI Y X, WANG X F ,et al. A contact lens promising for non-invasive continuous intraocular pressure monitoring[J]. RSC Advances, 2019,9(9): 5076-5082.
XU J D, CUI T R, HIRTZ T ,et al. Highly transparent and sensitive graphene sensors for continuous and non-invasive intraocular pressure monitoring[J]. ACS Applied Materials & Interfaces, 2020,12(16): 18375-18384.
ZHANG Y S, CHEN Y F, MAN T X ,et al. High resolution non-invasive intraocular pressure monitoring by use of graphene woven fabrics on contact lens[J]. Microsystems & Nanoengineering, 20195: 39.
LIU Z D, WANG G, PEI W H ,et al. Application of graphene nanowalls in an intraocular pressure sensor[J]. Journal of Materials Chemistry B, 2020,8(38): 8794-8802.
KIM J, PARK J, PARK Y G ,et al. A soft and transparent contact lens for the wireless quantitative monitoring of intraocular pressure[J]. Nature Biomedical Engineering, 2021,5(7): 772-782.
MAENG B, CHANG H K, PARK J . Photonic crystal-based smart contact lens for continuous intraocular pressure monitoring[J]. Lab on a Chip, 2020,20(10): 1740-1750.
AN H B, CHEN L Z, LIU X J ,et al. High-sensitivity liquid-metal-based contact lens sensor for continuous intraocular pressure monitoring[J]. Journal of Micromechanics and Microengineering, 2021,31(3): 035006.
MASSIN L, SEGUIN F, NOURRIT V ,et al. Smart contact lens applied to gaze tracking[J]. IEEE Sensors Journal, 2021,21(1): 455-463.
KHALDI A, DANIEL E, MASSIN L ,et al. A laser emitting contact lens for eye tracking[J]. Scientific Reports, 2020,10: 14804.
YIN R K, XU Z, MEI M ,et al. Soft transparent graphene contact lens electrodes for conformal full-cornea recording of electroretinogram[J]. Nature Communications, 2018,9: 2334.
KIM N I, CHEN J, WANG W J ,et al. Highly-sensitive skin-attachable eye-movement sensor using flexible nonhazardous piezoelectric thin film[J]. Advanced Functional Materials, 2021,31(8): 2008242.
XIE Y D, LU M Y, YIN W L ,et al. Novel wearable sensors for biomechanical movement monitoring based on electromagnetic sensing techniques[J]. IEEE Sensors Journal, 2020,20(2): 1019-1027.
KIREEV D, AMERI S K, NEDERVELD A ,et al. Fabrication,characterization and applications of graphene electronic tattoos[J]. Nature Protocols, 2021,16(5): 2395-2417.
HOMAYOUNFAR S Z, ROSTAMINIA S, KIAGHADI A ,et al. Multimodal smart eyewear for longitudinal eye movement tracking[J]. Matter, 2020,3(4): 1275-1293.
CHEN J, MI L T, CHEN C P ,et al. Design of foveated contact lens display for augmented reality[J]. Optics Express, 2019,27(26): 38204.
SANO J, TAKAKI Y . Holographic contact lens display that provides focusable images for eyes[J]. Optics Express, 2021,29(7): 10568-10579.
WU Y H, CHEN C P, MI L T ,et al. Design of retinal-projection-based near-eye display with contact lens[J]. Optics Express, 2018,26(9): 11553-11567.
MARTIN P S, . Mojo vision nanoLEDs for invisible computing[C]// SPIE OPTO.Proc SPIE 11302,Light-Emitting Devices,Materials,and Applications XXIV, San Francisco,California,USA. 2020,11302: 9-16.
SINGH R, BAILEY S, CHANG P ,et al. 34.2 A 21pJ/frame/pixel Imager and 34pJ/frame/pixel Image Processor for a Low-Vision Augmented-Reality Smart Contact Lens[C]// Proceedings of 2021 IEEE International Solid- State Circuits Conference (ISSCC). Piscataway:IEEE Press, 2021: 482-484.
KIM Y J, MAENG J M, IRAZOQUI P P . Eyeglasses-powered,contact lens-like platform with high power transfer efficiency[J]. Biomedical Microdevices, 2015,17(4): 75.
CHIOU J C, HSU S H, HUANG Y C ,et al. A wirelessly powered smart contact lens with reconfigurable wide range and tunable sensitivity sensor readout circuitry[J]. Sensors, 2017,17(12): 108.
VÁSQUEZ QUINTERO A, ARAI R, YAMAZAKI Y ,et al. Near-field communication powered hydrogel-based smart contact lens[J]. Advanced Materials Technologies, 2020,5(12): 2000702.
TAKAMATSU T, YIN S J, FANG S J ,et al. Multifunctional high-power sources for smart contact lenses[J]. Advanced Functional Materials, 2020,30(29): 1906225.
YUN J, ZENG Y, KIM M ,et al. Tear-based aqueous batteries for smart contact lenses enabled by Prussian blue analogue nanocomposites[J]. Nano Letters, 2021,21(4): 1659-1665.
XIA Y J, HEIDARI H, FAN H ,et al. Hybrid microenergy harvesters for smart contact lenses[C]// Proceedings of 2020 27th IEEE International Conference on Electronics,Circuits and Systems (ICECS). Piscataway:IEEE Press, 2020: 1-2.
PARK J, AHN D B, KIM J ,et al. Printing of wirelessly rechargeable solid-state supercapacitors for soft,smart contact lenses with continuous operations[J]. Science Advances, 2019,5(12).
0
浏览量
504
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构