浏览全部资源
扫码关注微信
1. 重庆邮电大学通信与信息工程学院,重庆 400065
2. 光电信息感测与传输技术重庆市重点实验室,重庆 400065
3. 伦敦布鲁内尔大学电子与计算机工程系,英国 伦敦 UB8 3PH
[ "李国权(1980− ),男,博士,重庆邮电大学通信与信息工程学院教授,主要研究方向为MIMO无线通信传输技术、异构无线网络传输技术、机器学习等" ]
[ "徐永海(1995− ),男,重庆邮电大学通信与信息工程学院硕士生,主要研究方向为MIMO无线通信传输技术、机器学习等" ]
[ "林金朝(1966− ),男,博士,重庆邮电大学通信与信息工程学院教授,主要研究方向为无线通信传输技术、BAN与信息处理技术等" ]
[ "黄正文(1981− ),男,博士,伦敦布鲁内尔大学讲师、高级研究员,主要研究方向为人工智能、复杂系统优化、数据分析等" ]
纸质出版日期:2022-03-30,
网络出版日期:2022-03,
移动端阅览
李国权, 徐永海, 林金朝, 等. 基于Res-DNN的端到端MIMO系统信号检测算法[J]. 物联网学报, 2022,6(1):65-72.
GUOQUAN LI, YONGHAI XU, JINZHAO LIN, et al. Res-DNN based signal detection algorithm for end-to-end MIMO systems. [J]. Chinese journal on internet of things, 2022, 6(1): 65-72.
李国权, 徐永海, 林金朝, 等. 基于Res-DNN的端到端MIMO系统信号检测算法[J]. 物联网学报, 2022,6(1):65-72. DOI: 10.11959/j.issn.2096-3750.2022.00256.
GUOQUAN LI, YONGHAI XU, JINZHAO LIN, et al. Res-DNN based signal detection algorithm for end-to-end MIMO systems. [J]. Chinese journal on internet of things, 2022, 6(1): 65-72. DOI: 10.11959/j.issn.2096-3750.2022.00256.
深度学习可通过提取无线通信数据的内在特征提升信号检测效果。针对MIMO系统信号检测存在的性能与复杂度的折中问题,提出一种基于深度学习的端到端MIMO系统信号检测方案。基于残差深度神经网络的编码器和解码器分别替代无线通信系统的发送端和接收端,将它们看作一个整体通过端到端的方式进行训练。编码器首先对输入数据进行特征提取,进而建立通信模型并传入迫零检测器进行初步检测,最终通过解码器重构得出检测信号。仿真结果表明,所提检测方案优于同类型算法,并且在牺牲一定时间复杂度的情况下,检测性能明显优于MMSE检测算法。
Deep learning can improve the effect of signal detection by extracting the inherent characteristics of wireless communication data.To solve the tradeoff between the performance and complexity of MIMO system signal detection
an end-to-end MIMO system signal detection scheme based on deep learning was proposed.The encoder and the decoder based on residual deep neural network replace the transmitter and the receiver of the wireless communication system respectively
and they were trained in an end-to-end manner as a whole.Firstly
the features of the input data were extracted by encoder
then the communication model was established and was sent to the zero forcing detector for preliminary detection.Finally
the detection signal was reconstructed through the decoder.Simulation results show that the proposed detection scheme is superior to the same type of algorithm
and the detection performance is significantly better than that of the MMSE detection algorithm at the expense of a certain time complexity.
深度学习MIMO系统信号检测残差深度神经网络端到端
deep learningMIMO systemsignal detectionRes-DNNend-to-end
ABID W, HAJJAJ M, MEJRI A ,et al. Weighted Kalman based detection for uplink MIMO systems[C]// Proceedings of 2020 International Conference on Software,Telecommunications and Computer Networks (SoftCOM). Piscataway:IEEE Press, 2020: 1-6.
CHAN A M, LEE I . A new reduced-complexity sphere decoder for multiple antenna systems[C]// Proceedings of 2002 IEEE International Conference on Communications.Conference Proceedings. Piscataway:IEEE Press, 2002: 460-464.
LUO Z Q, MA W K, SO A M C ,et al. Semidefinite relaxation of quadratic optimization problems[J]. IEEE Signal Processing Magazine, 2010,27(3): 20-34.
JALDEN J, OTTERSTEN B . The diversity order of the semidefinite relaxation detector[J]. IEEE Transactions on Information Theory, 2008,54(4): 1406-1422.
JEON C, GHODS R, MALEKI A ,et al. Optimality of large MIMO detection via approximate message passing[C]// Proceedings of 2015 IEEE International Symposium on Information Theory (ISIT). Piscataway:IEEE Press, 2015: 1227-1231.
WALUYO C B, ISKANDAR , . Performance analysis with LMMSE for MIMO LTE on the high altitude platform station[C]// Proceedings of 2015 International Conference on Electrical Engineering and Informatics (ICEEI). Piscataway:IEEE Press, 2015: 308-313.
XIONG Y Z, WEI N, ZHANG Z P . An LMMSE-based receiver for uplink massive MIMO systems with randomized IQ imbalance[J]. IEEE Communications Letters, 2018,22(8): 1624-1627.
DEEP S, ZHENG X . Leveraging CNN and transfer learning for vision-based human activity recognition[C]// Proceedings of 2019 29th International Telecommunication Networks and Applications Conference (ITNAC). Piscataway:IEEE Press, 2019: 1-4.
HASSAN S, IRFAN A, MIRZA A ,et al. Cursive handwritten text recognition using Bi-directional LSTMs:a case study on Urdu handwriting[C]// Proceedings of 2019 International Conference on Deep Learning and Machine Learning in Emerging Applications (Deep-ML). Piscataway:IEEE Press, 2019: 67-72.
ALWEHAIBI A, ROY K . Comparison of pre-trained word vectors for Arabic text classification using deep learning approach[C]// Procee- dings of 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA). Piscataway:IEEE Press, 2018: 1471-1474.
桂冠, 王禹, 黄浩 . 基于深度学习的物理层无线通信技术:机遇与挑战[J]. 通信学报, 2019,40(2): 19-23.
GUI G, WANG Y, HUANG H . Deep learning based physical layer wireless communication techniques:opportunities and challenges[J]. Journal on Communications, 2019,40(2): 19-23.
李国权, 杨鹏, 林金朝 ,等. 基于深度学习的 MIMO 系统联合优化[J]. 重庆邮电大学学报(自然科学版), 2019,31(3): 293-298.
LI G Q, YANG P, LIN J Z ,et al. Deep learning-based joint optimization for MIMO systems[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2019,31(3): 293-298.
ZHANG Y B, WANG J, SUN J L ,et al. CV-3DCNN:complex-valued deep learning for CSI prediction in FDD massive MIMO systems[J]. IEEE Wireless Communications Letters, 2021,10(2): 266-270.
WANG J, GUI G, OHTSUKI T ,et al. Compressive sampled CSI feedback method based on deep learning for FDD massive MIMO systems[J]. IEEE Transactions on Communications, 2021,69(9): 5873-5885.
XIA J J, DENG D, FAN D . A note on implementation methodologies of deep learning-based signal detection for conventional MIMO transmitters[J]. IEEE Transactions on Broadcasting, 2020,66(3): 744-745.
HUANG H J, SONG Y W, YANG J ,et al. Deep-learning-based millimeter-wave massive MIMO for hybrid precoding[J]. IEEE Transactions on Vehicular Technology, 2019,68(3): 3027-3032.
MA W Y, QI C H, ZHANG Z C ,et al. Sparse channel estimation and hybrid precoding using deep learning for millimeter wave massive MIMO[J]. IEEE Transactions on Communications, 2020,68(5): 2838-2849.
HE H T, WEN C K, JIN S ,et al. A model-driven deep learning network for MIMO detection[C]// Proceedings of 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP). Piscataway:IEEE Press, 2018: 584-588.
MA J J, LIU L, YUAN X J ,et al. On orthogonal AMP in coded linear vector systems[J]. IEEE Transactions on Wireless Communications, 2019,18(12): 5658-5672.
CORLAY V, BOUTROS J J, CIBLAT P ,et al. Multilevel MIMO detection with deep learning[C]// Proceedings of 2018 52nd Asilomar Conference on Signals,Systems,and Computers. Piscataway:IEEE Press, 2018: 1805-1809.
JIN X L, KIM H N . Parallel deep learning detection network in the MIMO channel[J]. IEEE Communications Letters, 2020,24(1): 126-130.
LIAO S Y, DENG C H, LIU L J ,et al. Structured neural network with low complexity for MIMO detection[C]// Proceedings of 2019 IEEE International Workshop on Signal Processing Systems (SiPS). Piscataway:IEEE Press, 2019: 290-295.
SAMUEL N, DISKIN T, WIESEL A . Learning to detect[J]. IEEE Transactions on Signal Processing, 2019,67(10): 2554-2564.
HE K M, ZHANG X Y, REN S Q ,et al. Deep residual learning for image recognition[C]// Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Piscataway:IEEE Press, 2016: 770-778.
CHENG X, LIU D J, ZHU Z Y ,et al. A ResNet-DNN based channel estimation and equalization scheme in FBMC/OQAM systems[C]// Proceedings of 2018 10th International Conference on Wireless Communications and Signal Processing (WCSP) Piscataway:IEEE Press, 2018: 1-5.
0
浏览量
486
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构