浏览全部资源
扫码关注微信
1. 北京邮电大学信息与通信工程学院,北京 100876
2. 北京邮电大学网络与交换技术国家重点实验室,北京 100876
[ "刘杨(1984− ),男,博士,北京邮电大学信息与通信工程学院副教授,主要研究方向为感传算一体化、低功耗水下物联网等" ]
[ "李崔灿(1998− ),女,北京邮电大学信息与通信工程学院硕士生,主要研究方向为低功耗水下物联网等" ]
[ "彭木根(1978− ),男,博士,北京邮电大学信息与通信工程学院教授、执行院长,教育部“长江学者”特聘教授,国家杰出青年科学基金获得者,IEEE Fellow,主要研究方向为移动通信组网等" ]
纸质出版日期:2022-06-30,
网络出版日期:2022-06,
移动端阅览
刘杨, 李崔灿, 彭木根. 低功耗水下物联网:愿景与关键技术[J]. 物联网学报, 2022,6(2):1-9.
YANG LIU, CUICAN LI, MUGEN PENG. Low-power internet of underwater things: vision and key technologies. [J]. Chinese journal on internet of things, 2022, 6(2): 1-9.
刘杨, 李崔灿, 彭木根. 低功耗水下物联网:愿景与关键技术[J]. 物联网学报, 2022,6(2):1-9. DOI: 10.11959/j.issn.2096-3750.2022.00270.
YANG LIU, CUICAN LI, MUGEN PENG. Low-power internet of underwater things: vision and key technologies. [J]. Chinese journal on internet of things, 2022, 6(2): 1-9. DOI: 10.11959/j.issn.2096-3750.2022.00270.
随着水下传感设备的激增以及对能源节约的追求,低功耗水下物联网的概念得以提出。受基于射频的反向散射网络启发,低功耗水下物联网利用水声反向散射技术实现水下传感器节点低功耗、低成本通信,在如水下长期探测等水下领域有着广泛的应用前景。首先,介绍了低功耗水下物联网的原理与架构;然后,提出并分析了该架构的关键技术,如感知、通信、组网、资源分配、安全等;最后,探讨了低功耗水下物联网的未来研究方向。
With the explosion of underwater sensing devices and the pursuit of energy conservation
the concept of low-power internet of underwater things has been put forward.Inspired by RF-based backscatter networks
the low-power internet of underwater things architecture uses underwater acoustic backscatter technology to realize the low-power and low-cost communication of underwater sensor nodes
which has a wide application prospect in underwater fields such as the long-term underwater detection.Firstly
the principle and architecture of low-power internet of underwater things was introduced.Then
the key technologies faced by the architecture were proposed and analyzed
such as perception
communication
networking
resource allocation
security and so on.Finally
the future research directions of low-power internet of underwater things were discussed.
水下物联网低功耗反向散射水声网络
internet of underwater thingslow powerbackscatteringunderwater acoustic network
IDC. IDC:2021下半年全球物联网支出指南发布,中国物联网市场规模有望在2025年超3 000亿美元[EB]. 2021.
IDC. IDC:Global IoT spending guide released for the second half of 2021,China IoT market size expected to exceed $300 billion by 2025[EB]. 2021.
ZENG Z Q, FU S, ZHANG H H ,et al. A survey of underwater optical wireless communications[J]. IEEE Communications Surveys & Tutorials, 2017,19(1): 204-238.
JAHANBAKHT M, XIANG W, HANZO L ,et al. Internet of underwater things and big marine data analytics—A comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2021,23(2): 904-956.
LIOU E C, KAO C C, CHANG C H ,et al. Internet of underwater things:challenges and routing protocols[C]// Proceedings of 2018 IEEE International Conference on Applied System Invention. Piscataway:IEEE Press, 2018: 1171-1174.
LLORET J . Underwater sensor nodes and networks[J]. Sensors (Basel,Switzerland), 2013,13(9): 11782-11796.
VAN HUYNH N, HOANG D T, LU X ,et al. Ambient backscatter communications:a contemporary survey[J]. IEEE Communications Surveys & Tutorials, 2018,20(4): 2889-2922.
WANG H, WANG S L, ZHANG E Y ,et al. An energy balanced and lifetime extended routing protocol for underwater sensor networks[J]. Sensors (Basel,Switzerland), 2018,18(5): 1596.
LIU L B, ZHOU S L, CUI J H . Prospects and problems of wireless communication for underwater sensor networks[J]. Wireless Communications and Mobile Computing, 2008,8(8): 977-994.
JANG J, ADIB F . Underwater backscatter networking[C]// SIGCOMM '19:Proceedings of the ACM Special Interest Group on Data Communication. New York:ACM Press, 2019: 187-199.
DING H, HAN J S, LIU A X ,et al. Counting human objects using backscattered radio frequency signals[J]. IEEE Transactions on Mobile Computing, 2019,18(5): 1054-1067.
ZHAO C, LI Z J, DING H ,et al. A fingertip profiled RF identifier[J]. IEEE Transactions on Mobile Computing, 2022,21(2): 392-407.
DING H, QIAN C, HAN J S ,et al. Close-proximity detection for hand approaching using backscatter communication[J]. IEEE Transactions on Mobile Computing, 2019,18(10): 2285-2297.
YANG L, LI Y, LIN Q Z ,et al. Making sense of mechanical vibration period with sub-millisecond accuracy using backscatter signals[C]// Proceedings of the 22nd Annual International Conference on Mobile Computing and Networking. New York:ACM Press, 2016: 16-28.
LI P, AN Z L, YANG L ,et al. RFID harmonic for vibration sensing[J]. IEEE Transactions on Mobile Computing, 2021,20(4): 1614-1626.
CHRISTENSEN-JEFFRIES K, HARPUT S, BROWN J ,et al. Microbubble axial localization errors in ultrasound super-resolution imaging[J]. IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control, 2017,64(11): 1644-1654.
WANG K D, GU J F, REN F C ,et al. A multitarget active backscattering 2-D positioning system with super resolution time series post-processing technique[J]. IEEE Transactions on Microwave Theory and Techniques, 2017,65(5): 1751-1766.
ROSTAMI M, GUMMESON J, KIAGHADI A ,et al. Polymorphic radios:a new design paradigm for ultra-low power communication[C]// Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication. New York:ACM, 2018: 446-460.
LIU T C, LIU Y H, YANG L ,et al. BackPos:high accuracy backscatter positioning system[J]. IEEE Transactions on Mobile Computing, 2016,15(3): 586-598.
HE C, LUAN H X, LI X Y ,et al. A simple,high-performance space–time code for MIMO backscatter communications[J]. IEEE Internet of Things Journal, 2020,7(4): 3586-3591.
LUAN H X, XIE X, HAN L Y ,et al. A better than alamouti OSTBC for MIMO backscatter communications[J]. IEEE Transactions on Wireless Communications, 2022,21(2): 1117-1131.
SONG G C, WANG W, YANG H ,et al. Exploiting channel polarization for reliable wide-area backscatter networks[J]. IEEE Transactions on Mobile Computing, 5549,PP(99): 1.
GOUDELI E, PSOMAS C, KRIKIDIS I . Spatial-modulation-based techniques for backscatter communication systems[J]. IEEE Internet of Things Journal, 2020,7(10): 10623-10634.
ZHAO J, GONG W, LIU J C . Spatial stream backscatter using commodity WiFi[C]// Proceedings of the 16th Annual International Conference on Mobile Systems,Applications,and Services. New York:ACM, 2018: 191-203.
GUO X Z, SHANGGUAN L F, HE Y ,et al. Aloba:rethinking ON-OFF keying modulation for ambient LoRa backscatter[C]// Proceedings of SenSys'20:Proceedings of the 18th Conference on Embedded Networked Sensor Systems. 2020: 192-204.
GONG W, YUAN L Z, WANG Q W ,et al. Multiprotocol backscatter for personal IoT sensors[C]// Proceedings of CoNEXT'20:Proceedings of the 16th International Conference on emerging Networking EXperiments and Technologies. 2020: 261-273.
YANG G, ZHANG Q Q, LIANG Y C . Cooperative ambient backscatter communications for green Internet-of-things[J]. IEEE Internet of Things Journal, 2018,5(2): 1116-1130.
CHOI J . Matched-filter-based backscatter communication for IoT devices over ambient OFDM carrier[J]. IEEE Internet of Things Journal, 2019,6(6): 10229-10239.
KIM T, LEE W . Channel independent Wi-Fi backscatter networks[C]// Proceedings of IEEE INFOCOM 2019 - IEEE Conference on Computer Communications. Piscataway:IEEE Press, 2019: 262-270.
HUANG Q Y, SONG G C, WANG W ,et al. FreeScatter:enabling concurrent backscatter communication using antenna arrays[J]. IEEE Internet of Things Journal, 2020,7(8): 7310-7318.
GONGW , LIU H X, LIU K B, et al . Exploiting channel diversity for rate adaptation in backscatter communication networks[C]// Proceedings of IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications. Piscataway:IEEE Press, 2016: 1-9.
GONG W, CHEN S, LIU J C . Towards higher throughput rate adaptation for backscatter networks[C]// Proceedings of 2017 IEEE 25th International Conference on Network Protocols. Piscataway:IEEE Press, 2017: 1-10.
CHEN S, GONG W, ZHAO J ,et al. High-throughput and robust rate adaptation for backscatter networks[J]. IEEE/ACM Transactions on Networking, 2020,28(5): 2120-2131.
HAN S Y, LIANG Y C, SUN G L . The design and optimization of random code assisted multi-BD symbiotic radio system[J]. IEEE Transactions on Wireless Communications, 2021,20(8): 5159-5170.
MA Z J, FENG L, XU F X . Design and analysis of a distributed and demand-based backscatter MAC protocol for Internet of Things networks[J]. IEEE Internet of Things Journal, 2019,6(1): 1246-1256.
LIU W C, HUANG K B, ZHOU X Y ,et al. Full-duplex backscatter interference networks based on time-hopping spread spectrum[J]. IEEE Transactions on Wireless Communications, 2017,16(7): 4361-4377.
PENG Y, SHANGGUAN L, HU Y ,et al. PLoRa:a passive long-range data network from ambient LoRa transmissions[C]// Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication. New York:ACM Press, 2018: 147-160.
CHEN W Y, DING H Y, WANG S L ,et al. Backscatter cooperation in NOMA communications systems[J]. IEEE Transactions on Wireless Communications, 2021,20(6): 3458-3474.
KHAN W U, JAVED M A, NGUYEN T N ,et al. Energy-efficient resource allocation for 6G backscatter-enabled NOMAIoV networks[J]. IEEE Transactions on Intelligent Transportation Systems,0942 PP(99): 1-11.
CHU Z, HAO W M, XIAO P ,et al. Resource allocations for symbiotic radio with finite block length backscatter link[J]. IEEE Internet of Things Journal, 2020,7(9): 8192-8207.
MISHRA D, LARSSON E G . Optimal channel estimation for reciprocity-based backscattering with a full-duplex MIMO reader[J]. IEEE Transactions on Signal Processing, 2019,67(6): 1662-1677.
LYU B, YANGZ , GUO H Y ,et al. Relay cooperation enhanced backscatter communication for Internet-of-things[J]. IEEE Internet of Things Journal, 2019,6(2): 2860-2871.
XU J, LI J C, GONG S M ,et al. Passive relaying game for wireless powered internet of things in backscatter-aided hybrid radio networks[J]. IEEE Internet of Things Journal, 2019,6(5): 8933-8944.
YANG C L, WANG X D, CHIN K W . On max–min throughput in backscatter-assisted wirelessly powered IoT[J]. IEEE Internet of Things Journal, 2020,7(1): 137-147.
HASSAN M Z, HOSSAIN M J, CHENG J L ,et al. Statistical-QoS guarantee for IoT network driven by laser-powered UAV relay and RF backscatter communications[J]. IEEE Transactions on Green Communications and Networking, 2021,5(1): 406-425.
YANG G, YUAN DD, LIANG Y C . Optimal resource allocation in full-duplex ambient backscatter communication networks for green IoT[J]. 2018 IEEE Global Communications Conference (GLOBECOM), 2018: 1-6.
LONG Y S, HUANG G F, TANG D ,et al. Achieving high throughput in wireless networks with hybrid backscatter and wireless-powered communications[J]. IEEE Internet of Things Journal, 2021,8(13): 10896-10910.
YANG Q, WANG H M, ZHANG Y ,et al. Physical layer security in MIMO backscatter wireless systems[J]. IEEE Transactions on Wireless Communications, 2016,15(11): 7547-7560.
LI X W, ZHAO M L, ZENG M ,et al. Hardware impaired ambient backscatter NOMA systems:reliability and security[J]. IEEE Transactions on Communications, 2021,69(4): 2723-2736.
WANG P, JIAO L, ZENG K ,et al. Physical layer key generation between backscatter devices over ambient RF signals[C]// Proceedings of IEEE INFOCOM 2021 - IEEE Conference on Computer Communications. Piscataway:IEEE Press, 2021: 1-10.
ZHANG Y, GAO F F, FAN L S ,et al. Backscatter communications over correlated nakagami-$m$ fading channels[J]. IEEE Transactions on Communications, 2019,67(2): 1693-1704.
YANG Q, WANG H M, YIN Q Y ,et al. Exploiting randomized continuous wave in secure backscatter communications[J]. IEEE Internet of Things Journal, 2020,7(4): 3389-3403.
GHAFFARIVARDAVAGH R, AFZAL S S, RODRIGUEZ O ,et al. Ultra-wideband underwater backscatter via piezoelectric metamaterials[C]// SIGCOMM '20:Proceedings of the Annual conference of the ACM Special Interest Group on Data Communication on the applications,technologies,architectures,and protocols for computer communication. New York:ACM Press, 2020: 722-734.
LI D, ZHANG H, FAN L S . Adaptive mode selection for backscatter-assisted communication systems with opportunistic SIC[J]. IEEE Transactions on Vehicular Technology, 2020,69(2): 2327-2331.
GONG W, LIU H X, LIU J C ,et al. Channel-aware rate adaptation for backscatter networks[J]. IEEE/ACM Transactions on Networking, 2018,26(2): 751-764.
0
浏览量
1035
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构