浏览全部资源
扫码关注微信
1. 北京邮电大学先进信息网络北京实验室,北京 100876
2. 北京邮电大学网络体系构建与融合北京市重点实验室,北京 100876
[ "陈九九(1994- ),男,北京邮电大学博士生,主要研究方向为车联网资源分配、语义通信、强化学习算法等" ]
[ "郭彩丽(1977- ),女,博士,北京邮电大学教授、博士生导师,主要研究方向为语义通信、无线移动通信技术、认知无线电、信号检测与估值、车联网、可见光通信、视觉智能计算、社交跨媒体数据挖掘与分析等" ]
[ "冯春燕(1963- ),女,博士,北京邮电大学教授、博士生导师,主要研究方向为无线通信信息传输与处理、宽带通信网络理论与技术、社交网络分析和信息检索、电信大数据分析与挖掘等" ]
[ "刘传宏(1998- ),男,北京邮电大学博士生,主要研究方向为深度学习、语义通信、资源分配等" ]
纸质出版日期:2022-09-30,
网络出版日期:2022-09,
移动端阅览
陈九九, 郭彩丽, 冯春燕, 等. 智能网联环境下面向语义通信的资源分配[J]. 物联网学报, 2022,6(3):47-57.
JIUJIU CHEN, CAILI GUO, CHUNYAN FENG, et al. Resource allocation for the semantic communication in the intelligent networked environment. [J]. Chinese journal on internet of things, 2022, 6(3): 47-57.
陈九九, 郭彩丽, 冯春燕, 等. 智能网联环境下面向语义通信的资源分配[J]. 物联网学报, 2022,6(3):47-57. DOI: 10.11959/j.issn.2096-3750.2022.00279.
JIUJIU CHEN, CAILI GUO, CHUNYAN FENG, et al. Resource allocation for the semantic communication in the intelligent networked environment. [J]. Chinese journal on internet of things, 2022, 6(3): 47-57. DOI: 10.11959/j.issn.2096-3750.2022.00279.
传统的资源分配方法难以满足智能网联环境下各种业务准确理解大量多媒体数据语义的需求。针对该挑战,以智能任务导向的车联网场景为例,首先,提出了两种面向语义通信的资源分配优化准则;然后,针对不同维度的资源,综述了面向语义通信的资源分配模型与算法;构建了面向语义通信的图像数据集,在车联网仿真场景下分析了所研究资源分配方法的性能优势;最后,给出了语义通信资源分配的未来挑战。
Traditional resource allocation methods are difficult to meet the needs of various services to accurately understand the semantics of a large amount of multimedia data in the intelligent networked environment.Facing with this challenge
taking intelligent task-oriented internet of vehicles scenarios as an example
two resource allocation optimization criteria for the semantic communication were firstly proposed.Then
according to different dimensions of resources
the models and algorithms of the resource allocation for the semantic communication were described.Then
a semantic communication-oriented image dataset was constructed
and the performance advantages of the proposed resource allocation methods in the simulation scenario of the internet of vehicles were analyzed.Finally
the future challenges of the resource allocation for the semantic communication were presented.
语义通信资源分配智能网联优化准则强化学习
semantic communicationresources allocationintelligent networked connectionoptimization criteriareinforcement learning
GYAWALI S, XU S J, QIAN Y ,et al. Challenges and solutions for cellular based V2X communications[J]. IEEE Communications Surveys & Tutorials, 2021,23(1): 222-255.
李克强 . 中国智能网联汽车产业化过程中的挑战及发展对策[J]. 机器人产业, 2019(6): 54-57.
LI K Q . Challenges and development countermeasures in the industrialization of China's intelligent connected vehicles[J]. Robot Industry, 2019(6): 54-57.
DENG S G, ZHAO H L, FANG W J ,et al. Edge intelligence,the confluence of edge computing and artificial intelligence[J]. IEEE Internet of Things Journal, 2020,7(8): 7457-7469.
CALVANESE STRINATI E, BARBAROSSA S . 6G networks,beyond Shannon towards semantic and goal-oriented communications[J]. Computer Networks,(190), 2021(90): 107930.
SHANNON C E, WEAVER W, WIENER N . The mathematical theory of communication[J]. Physics Today, 1950,3(9): 31-32.
SHI G M, XIAO Y, LI Y Y ,et al. From semantic communication to semantic-aware networking,model,architecture,and open problems[J]. IEEE Communications Magazine, 2021,59(8): 44-50.
LI G Y, BOUKHATEM L, WU J S . Adaptive quality-of-service-based routing for vehicular ad hoc networks with ant colony optimization[J]. IEEE Transactions on Vehicular Technology, 2017,66(4): 3249-3264.
KIM J W, KIM J W, JEON D K . A cooperative communication protocol for QoS provisioning in IEEE 802.11p/wave vehicular networks[J]. Sensors (Basel,Switzerland), 2018,18(11): 3622.
WU Z Y, LU Z H, HUNG P C K ,et al. QaMeC,a QoS-driven IoVs application optimizing deployment scheme in multimedia edge clouds[J]. Future Generation Computer Systems, 2019(92): 17-28.
SUN L, SHAN H G, HUANG A P ,et al. Channel allocation for adaptive video streaming in vehicular networks[J]. IEEE Transactions on Vehicular Technology, 2017,66(1): 734-747.
ZHANG H X, MA Y B, YUAN D F ,et al. Quality-of-service driven power and sub-carrier allocation policy for vehicular communication networks[J]. IEEE Journal on Selected Areas in Communications, 2011,29(1): 197-206.
LIANG H B, ZHANG X H, HONG X T ,et al. Reinforcement learning enabled dynamic resource allocation in the Internet of vehicles[J]. IEEE Transactions on Industrial Informatics, 2021,17(7): 4957-4967.
TAO X M, DUAN Y P, XU M ,et al. Learning QoE of mobile video transmission with deep neural network,a data-driven approach[J]. IEEE Journal on Selected Areas in Communications, 2019,37(6): 1337-1348.
BAIRAGI A K, ABEDIN S F, TRAN N H ,et al. QoE-enabled unlicensed spectrum sharing in 5G,a game-theoretic approach[J]. IEEE Access, 2018,6: 50538-50554.
JALIL PIRAN M, TRAN N H, SUH D Y ,et al. QoE-driven channel allocation and handoff management for seamless multimedia in cognitive 5G cellular networks[J]. IEEE Transactions on Vehicular Technology, 2017,66(7): 6569-6585.
ZHU H, CAO Y, WANG W ,et al. QoE-aware resource allocation for adaptive device-to-device video streaming[J]. IEEE Network, 2015,29(6): 6-12.
CHEN X, HWANG J N, DE MENG ,et al. A quality-of-content-based joint source and channel coding for human detections in a mobile surveillance cloud[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2017,27(1): 19-31.
ZHU L, YU F R, WANG Y G ,et al. Big data analytics in intelligent transportation systems,a survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2019,20(1): 383-398.
ZHOU Z, CHEN X, LI E ,et al. Edge intelligence,paving the last Mile of artificial intelligence with edge computing[J]. Proceedings of the IEEE, 2019,107(8): 1738-1762.
FLORIDI L . Outline of a theory of strongly semantic information[J]. Minds and Machines, 2004,14(2): 197-221.
BAO J, BASU P, DEAN M K ,et al. Towards a theory of semantic communication[C]// Proceedings of 2011 IEEE Network Science Workshop. Piscataway,IEEE Press, 2011: 110-117.
SHANNON C E . Communication in the presence of noise[J]. Proceedings of the IRE, 1949,37(1): 10-21.
徐文伟, 张弓, 白铂 ,等. 后香农时代ICT领域的十大挑战问题[J]. 中国科学,数学, 2021,51(7): 1095-1138.
XU W W, ZHANG G, BAI B ,et al. Ten key ICT challenges in the post-Shannon era[J]. Scientia Sinica (Mathematica), 2021,51(7): 1095-1138.
ZHONG Y X . A theory of semantic information[J]. China Communications, 2017,14(1): 1-17.
ZHU M Y, FENG C Y, CHEN J J ,et al. Video semantics based resource allocation algorithm for spectrum multiplexing scenarios in vehicular networks[C]// Proceedings of 2021 IEEE/CIC International Conference on Communications in China (ICCC Workshops). Piscataway,IEEE Press, 2021: 31-36.
陈九九, 冯春燕, 郭彩丽 ,等. 车联网中视频语义驱动的资源分配算法[J]. 通信学报, 2021,42(7): 1-11.
CHEN J J, FENG C Y, GUO C L ,et al. Video semantics-driven resource allocation algorithm in Internet of vehicles[J]. Journal on Communications, 2021,42(7): 1-11.
CHEN J J, GUO C L, FENG C Y ,et al. Content driven and reinforcement learning based resource allocation scheme in vehicular network[C]// Proceedings of ICC 2021 - IEEE International Conference on Communications. Piscataway,IEEE Press, 2021: 1-6.
BOYD S, VANDENBERGHE L . Convex optimization[M]. Cambridge,Cambridge University Press, 2004.
ZANDAVI S M, CHUNG V Y Y, ANAISSI A . Stochastic dual simplex algorithm,a novel heuristic optimization algorithm[J]. IEEE Transactions on Cybernetics, 2021,51(5): 2725-2734.
HUSSAIN F, HASSAN S A, HUSSAIN R ,et al. Machine learning for resource management in cellular and IoT networks,potentials,current solutions,and open challenges[J]. IEEE Communications Surveys &Tutorials, 2020,22(2): 1251-1275.
XIE H Q, QIN Z J, LI G Y ,et al. Deep learning enabled semantic communication systems[J]. IEEE Transactions on Signal Processing, 2021,69: 2663-2675.
SHARMA S, KAUSHIK B . A survey on Internet of vehicles,applications,security issues & solutions[J]. Vehicular Communications, 2019(20),100182
ZHANG K, MAO Y M, LENG S P ,et al. Predictive offloading in cloud-driven vehicles,using mobile-edge computing for a promising network paradigm[J]. IEEE Vehicular Technology Magazine, 2017(99),1.
HAN X, TIAN D X, SHENG Z G ,et al. Reliability-aware joint optimization for cooperative vehicular communication and computing[J]. IEEE Transactions on Intelligent Transportation Systems, 2021,22(8): 5437-5446.
CAO X W, WANG F, XU J ,et al. Joint computation and communication cooperation for energy-efficient mobile edge computing[J]. IEEE Internet of Things Journal, 2019,6(3): 4188-4200.
LI E, ZENG L K, ZHOU Z ,et al. Edge AI,on-demand accelerating deep neural network inference via edge computing[J]. IEEE Transactions on Wireless Communications, 2020,19(1): 447-457.
LEE M Y, YU G D, LI G Y . Learning to branch,accelerating resource allocation in wireless networks[J]. IEEE Transactions on Vehicular Technology, 2020,69(1): 958-970.
LUO S Q, CHEN X, ZHOU Z ,et al. Fog-enabled joint computation,communication and caching resource sharing for energy-efficient IoT data stream processing[J]. IEEE Transactions on Vehicular Technology, 2021,70(4): 3715-3730.
XU L M, YANG Z X, WU H Q ,et al. Socially driven joint optimization of communication,caching,and computing resources in vehicular networks[J]. IEEE Transactions on Wireless Communications, 2022,21(1): 461-476.
WANG G, WANG L, CHUAN J B ,et al. LRA-3C,learning based resource allocation for communication-computing-caching systems[C]// Proceedings of 2019 International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber,Physical and Social Computing (CPSCom) and IEEE Smart Data. Piscataway,IEEE Press, 2019: 828-833.
贺颖 . 基于深度强化学习的无线网络多维资源分配技术研究[D]. 大连,大连理工大学, 2018.
HE Y . Research on multi-dimensional resource allocation of wireless networks based on deep reinforcement learning[D]. Dalian,Dalian University of Technology, 2018.
LI Z, GUO C L . Multi-agent deep reinforcement learning based spectrum allocation for D2D underlay communications[J]. IEEE Transactions on Vehicular Technology, 2020,69(2): 1828-1840.
DOLLÁR P, WOJEK C, SCHIELE B ,et al. Pedestrian detection:anevaluation of the state of the art[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012,34(4): 743-761.
SUN P, KRETZSCHMAR H, DOTIWALLA X ,et al. Scalability in perception for autonomous driving,waymo open dataset[C]// Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway,IEEE Press, 2020: 2443-2451.
CHEN J, GUO C, WEI S ,et al. SCO-Dataset[EB]. 2022.
REN S Q, HE K M, GIRSHICK R ,et al. Faster R-CNN,towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(6): 1137-1149.
SULLIVAN G J, OHM J R, HAN W J ,et al. Overview of the high efficiency video coding (HEVC) standard[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2012,22(12): 1649-1668.
0
浏览量
609
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构