浏览全部资源
扫码关注微信
1. 北京交通大学计算机与信息技术学院,北京 100044
2. 北京交通大学高速铁路网络管理教育部工程研究中心,北京 100044
3. 国网能源研究院有限公司,北京 102209
[ "郭英芸(1995- ),女,北京交通大学硕士生,主要研究方向为移动与互联网络" ]
[ "高博(1984- ),男,北京交通大学副教授,主要研究方向为无线网络、移动计算、机器学习" ]
[ "张志飞(1971- ),男,博士,北京交通大学计算机与信息技术学院高级工程师,博士,主要研究方向为网络通信理论、网络安全等" ]
[ "张煜(1983- ),男,博士,国网能源研究院有限公司高级工程师,主要研究方向为泛在电力物联网、无线协作网络、电能替代等" ]
[ "熊轲(1981-),男,博士,北京交通大学计算机与信息技术学院教授、副院长,主要研究方向为无线协作网络、无线移动网络和网络信息理论等" ]
纸质出版日期:2022-12-30,
网络出版日期:2022-12,
移动端阅览
郭英芸, 高博, 张志飞, 等. 一种基于带宽分配的联邦学习激励机制[J]. 物联网学报, 2022,6(4):82-92.
YINGYUN GUO, BO GAO, ZHIFEI ZHANG, et al. An incentive mechanism with bandwidth allocation for federated learning. [J]. Chinese journal on internet of things, 2022, 6(4): 82-92.
郭英芸, 高博, 张志飞, 等. 一种基于带宽分配的联邦学习激励机制[J]. 物联网学报, 2022,6(4):82-92. DOI: 10.11959/j.issn.2096-3750.2022.00300.
YINGYUN GUO, BO GAO, ZHIFEI ZHANG, et al. An incentive mechanism with bandwidth allocation for federated learning. [J]. Chinese journal on internet of things, 2022, 6(4): 82-92. DOI: 10.11959/j.issn.2096-3750.2022.00300.
联邦学习(FL
federated learning)是一种新兴的机器学习范式,它可以充分利用移动众包资源进行去中心化数据训练。然而,在无线网络中部署 FL 面临网络带宽有限、移动用户自私等挑战。为了应对这些挑战,提出了一种基于带宽分配的激励机制(IMBA
incentive mechanism with bandwidth allocation)。IMBA考虑用户数据质量和计算能力的不同设计支付方案,以激励高数据质量用户贡献其计算资源,进而提升模型训练精度。通过最小化训练时间和支付成本权重和确定最佳支付与带宽分配方案,通过优化带宽分配降低训练时延。实验表明, IMBA能够有效提高训练精度,降低训练时间,并帮助服务器灵活权衡训练时间和支付报酬。
Federated learning (FL) is an emerging machine learning paradigm that can make full use of crowd sourced mobile resources for training on decentralized data.However
it is challenging to deploy FL over a wireless network because of the limited bandwidth and clients’ selfishness.To address these challenges
an incentive mechanism with bandwidth allocation (IMBA) was proposed.Considering the difference between clients' data quality and computing power
IMBA designs a payment scheme to incentivize high-quality clients to contribute their computing resources
thus improving the training accuracy of the model.By minimizing the weight sum of training time and payment cost
the optimal payment and bandwidth allocation scheme was determined
and the training delay was reduced by optimizing bandwidth allocation.Experiments show that IMBA effectively improves training accuracy
reduces the training delay and helps the server flexibly balance training delay and hiring payment.
联邦学习激励机制带宽分配Stackelberg博弈训练质量
federated learningincentive mechanismbandwidth allocationStackelberg gametraining quality
MCMAHAN B, MOORE E, RAMAGE D ,et al. Communication-efficient learning of deep networks from decentralized data[C]// Artificial intelligence and statistics. New York:PMLR, 2017: 1273-1282.
LIM W Y B, LUONG N C, HOANG D T ,et al. Federated learning in mobile edge networks:A comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2020,22(3): 2031-2063.
CHEN Y Q, QIN X, WANG J D ,et al. Fed Health:a federated transfer learning framework for wearable healthcare[J]. IEEE Intelligent Systems, 2020,35(4): 83-93.
LIU D B, DLIGACH D, MILLER T ,et al. Two-stage federated phenotyping and patient representation learning[EB]. 2019.
微众银行. 联邦学习白皮书v2.0[R]. 2020.
WEBANK. Federated learning white paper v2.0[R]. 2020.
QIN Z, LI G Y, YE H . Federated learning and wireless communications[J]. IEEE Wireless Communications, 2021,28(5): 134-140.
SHI W Q, ZHOU S, NIU Z S . Device scheduling with fast conver gence for federated learning[C]// Proceedings of ICC 2020-2020 IEEE International Conference on Communications. Piscataway:IEEE Press, 2020: 1-6.
YANG Z H, CHEN M Z, SAAD W ,et al. Energy efficient federated learning over wireless communication networks[J]. IEEE Transactions on Wireless Communications, 2021,20(3): 1935-1949.
CHEN M Z, YANG Z H, SAAD W ,et al. A joint learning and communications framework for federated learning over wireless networks[J]. IEEE Transactions on Wireless Communications, 2021,20(1): 269-283.
REN J K, YU G D, DING G Y . Accelerating DNN training in wireless federated edge learning systems[J]. IEEE Journal on Selected Areas in Communications, 2021,39(1): 219-232.
ABDULRAHMAN S, TOUT H, MOURAD A ,et al. FedMCCS:multicriteria client selection model for optimal IoT federated learning[J]. IEEE Internet of Things Journal, 2021,8(6): 4723-4735.
ZHANG W Y, WANG X M, ZHOU P ,et al. Client selection for federated learning with non-IID data in mobile edge computing[J]. IEEE Access, 2021,9: 24462-24474.
CHEN M Z, POOR H V, SAAD W ,et al. Convergence time minimization of federated learning over wireless networks[C]// Proceedings of ICC 2020-2020 IEEE International Conference on Communications. Piscataway:IEEE Press, 2020: 1-6.
NISHIO T, YONETANI R . Client selection for federated learning with heterogeneous resources in mobile edge[C]// Proceedings of ICC 2019-2019 IEEE International Conference on Communications. Piscataway:IEEE Press, 2019: 1-7.
CHAIZ , ALI A, ZAWAD S ,et al. TiFL:a tier-based federated learning system[EB]. 2020.
ZENG Q S, DU Y Q, HUANG K B ,et al. Energy-efficient radio resource allocation for federated edge learning[C]// Proceedings of 2020 IEEE International Conference on Communications Workshops. Piscataway:IEEE Press, 2020: 1-6.
XU J, WANG H . Client selection and bandwidth allocation in wireless federated learning networks:a long-term perspective[J]. IEEE Transactions on Wireless Communications, 2020,20(2): 1188-1200.
ZHU G X, WANG Y, HUANG K B . Broadband analog aggregation for low-latency federated edge learning[J]. IEEE Transactions on Wireless Communications, 2020,19(1): 491-506.
LIM W Y B, HUANG J Q, XIONG Z H ,et al. Towards federated learning in UAV-enabled Internet of vehicles:a multi-dimensional contract-matching approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2021,22(8): 5140-5154.
NISHIO T, SHINKUMA R, MANDAYAM N B . Estimation of individual device contributions for incentivizing federated learning[C]// Proceedings of 2020 IEEE Globecom Workshops (GC Wkshps. Piscataway:IEEE Press, 2020: 1-6.
WANG G, DANG C X, ZHOU Z Y . Measure contribution of participants in federated learning[C]// Proceedings of 2019 IEEE International Conference on Big Data(Big Data). Piscataway:IEEE Press, 2019: 2597-2604.
WU M Q, YE D D, DING J H ,et al. Incentivizing differentially private federated learning:a multidimensional contract approach[J]. IEEE Internet of Things Journal, 2021,8(13): 10639-10651.
PANDEY S R, TRAN N H, BENNIS M ,et al. A crowdsourcing framework for on-device federated learning[J]. IEEE Transactions on Wireless Communications, 2020,19(5): 3241-3256.
LI M, WENG J, YANG A J ,et al. CrowdBC:a blockchain-based decentralized framework for crowdsourcing[J]. IEEE Transactions on Parallel and Distributed Systems, 2019,30(6): 1251-1266.
KANG J W, XIONG Z H, NIYATO D ,et al. Incentive mechanism for reliable federated learning:a joint optimization approach to combining reputation and contract theory[J]. IEEE Internet of Things Journal, 2019,6(6): 10700-10714.
JIAO Y T, WANG P, NIYATO D ,et al. Toward an automated auction framework for wireless federated learning services market[J]. IEEETransactions on Mobile Computing, 2021,20(10): 3034-3048.
TANG M, WONG V W . An incentive mechanism for cross-silo federated learning:a public goods perspective[C]// Proceedings of the IEEE Conference on Computer Communications (INFOCOM). IEEE, 2021: 1-10.
DING N N, FANG Z X, HUANG J W . Incentive mechanism design for federated learning with multi-dimensional private information[C]// Proceedings of 2020 18th International Symposium on Modeling and Optimization in Mobile,Ad Hoc,and Wireless Networks (WiOPT). Piscataway:IEEE Press, 2020: 1-8.
SHANG L C, WANG X H, WANG P ,et al. Computation offloading management in vehicular edge network under imperfect CSI[C]// Proceedings of 2019 IEEE 2nd International Conference on Information Communication and Signal Processing. Piscataway:IEEE Press, 2019: 199-203.
ZHAO Y, LI M, LAI L Z ,et al. Federated learning withnon-IIDdata[EB]. 2018.
NARAHARI Y . 博弈论与机制设计[M]. 曹乾,译. 北京: 中国人民大学出版社, 2017.
NARAHARI Y . Game theory and mechanism design[M]. CAO Q,Translator. Beijing: Chinese People’s Publishing House., 2017.
0
浏览量
278
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构