浏览全部资源
扫码关注微信
1. 南京邮电大学物联网学院,江苏 南京 210003
2. 南京邮电大学江苏省宽带无线通信和物联网重点实验室,江苏 南京 210003
[ "汤蓓(1997- ),女,南京邮电大学硕士生,主要研究方向为雾/边缘计算、智能物联网" ]
[ "王倩(1996- ),女,南京邮电大学博士生,主要研究方向为雾/边缘计算、智能物联网" ]
[ "陈思光(1984-),男,博士,南京邮电大学教授,主要研究方向为雾/边缘计算、智能物联网" ]
纸质出版日期:2023-03-30,
网络出版日期:2023-03,
移动端阅览
汤蓓, 王倩, 陈思光. 融合射频能量采集的协同节能计算迁移研究[J]. 物联网学报, 2023,7(1):83-92.
BEI TANG, QIAN WANG, SIGUANG CHEN. Radio frequency energy harvesting-combined collaborative energy-saving computation offloading mechanism. [J]. Chinese journal on internet of things, 2023, 7(1): 83-92.
汤蓓, 王倩, 陈思光. 融合射频能量采集的协同节能计算迁移研究[J]. 物联网学报, 2023,7(1):83-92. DOI: 10.11959/j.issn.2096-3750.2023.00311.
BEI TANG, QIAN WANG, SIGUANG CHEN. Radio frequency energy harvesting-combined collaborative energy-saving computation offloading mechanism. [J]. Chinese journal on internet of things, 2023, 7(1): 83-92. DOI: 10.11959/j.issn.2096-3750.2023.00311.
为适应垂直市场差异化能源需求,保障物联网设备的高效可持续性运行,研究了一种融合射频能量采集的协同节能计算迁移机制。具体地,基于对计算迁移决策、上行带宽资源分配、下行带宽资源分配及基站功率分割的联合优化考量,构建了一个最小化系统总能耗的优化问题。为有效求解该优化问题,融合惩罚函数的概念设计了新的评价指标,并提出了一种基于自适应粒子群优化的协同节能计算迁移算法。该算法构造了动态变化的惯性权重和线性调节的惩罚因子,可在迭代搜索过程中实时变更粒子群落的空间分布密度,以生成可容忍惩罚下的最优计算迁移策略;进一步地,为避免粒子越过探索范围,引入了速度边界限制,可降低无效解的产生概率,提升搜索有效性。最后,仿真结果表明所提算法能够实现较高的收敛效率及求解精度,且与其他常见基准方案相比,完成任务处理的系统总能耗可分别降低34.09%、14.72%和6.86%。
In order to fit the differentiated energy demands in vertical markets and ensure that internet of things (IoT) devices can hold an efficient and sustainable operation mode
a radio frequency energy harvesting-combined collaborative energy-saving computation offloading mechanism was studied.Specifically
a system energy consumption minimization problem was formulated under the joint optimization consideration of computation offloading decision
uplink bandwidth resource allocation
downlink bandwidth resource allocation and base station power splitting.Meanwhile
by combining the concept of penalty function
a new evaluation index was introduced
and then an adaptive particle swarm optimization-based collaborative energy saving computation offloading (APSO-CESCO) algorithm was proposed to solve the problem.The proposed algorithm constructed dynamic inertia weight and linearly adjusted penalty factor
which could alternate the spatial distribution density of the particle community in real-time during the iterative search process
and the optimal computation offloading policy with tolerable punishment could be well-generated.Furthermore
to prevent particles from exceeding exploration range
the velocity boundary was introduced which could also reduce the generation probability of invalid solutions and improve the actual exploration effectiveness.Finally
the simulation results show that the proposed algorithm can achieve higher convergence efficiency and solution accuracy
and compared with other common benchmark schemes
the system energy consumption can be reduced by 34.09%
14.72%
and 6.86%
respectively.
计算迁移能量采集资源分配功率分割
computation offloadingenergy harvestingresource allocationpower splitting
BREM A, GIONES F, WERLE M . The AI digital revolution in innovation:a conceptual framework of artificial intelligence technologies for the management of innovation[J]. IEEE Transactions on Engineering Management, 2021(99): 1-7.
KIM H, CHA Y, KIM T ,et al. A study on the security threats and privacy policy of intelligent video surveillance system considering 5G network architecture[C]// Proceedings of 2020 International Conference on Electronics,Information,and Communication (ICEIC). Piscataway:IEEE Press, 2020: 1-4.
ZHOU S H, WEI C F, SONG C F ,et al. Short-term traffic flow prediction of the smart city using 5G Internet of vehicles based on edge computing[J]. IEEE Transactions on Intelligent Transportation Systems, 2022(99): 1-10.
CHEN M, MIAO Y M, JIAN X ,et al. Cognitive-LPWAN:towards intelligent wireless services in hybrid low power wide area networks[J]. IEEE Transactions on Green Communications and Networking, 2019,3(2): 409-417.
CHEN S G, WANG Z H, ZHANG H J ,et al. Fog-based optimized kronecker-supported compression design for industrial IoT[J]. IEEE Transactions on Sustainable Computing, 2020,5(1): 95-106.
WANG Q, CHEN S G . Latency-minimum offloading decision and resource allocation for fog-enabled internet of things networks[J]. Transactions on Emerging Telecommunications Technologies, 2020,31(12): 1-14.
SHI J, DU J, WANG J ,et al. Deep reinforcement learning-based V2V partial computation offloading in vehicular fog computing[C]// Proceedings of 2021 IEEE Wireless Communications and Networking Conference (WCNC). Piscataway:IEEE Press, 2021: 1-6.
JIANG Y X, SHUAI Y H, HE X L ,et al. An energy-efficient street lighting approach based on traffic parameters measured by wireless sensing technology[J]. IEEE Sensors Journal, 2021,21(17): 19134-19143.
CHEN S G, ZHU X, ZHANG H J ,et al. Efficient privacy preserving data collection and computation offloading for fog-assisted IoT[J]. IEEE Transactions on Sustainable Computing, 2020,5(4): 526-540.
CHEN S G, CHEN J M, MIAO Y F ,et al. Deep reinforcement learning-based cloud-edge collaborative mobile computation offloading in industrial networks[J]. IEEE Transactions on Signal and Information Processing over Networks, 2022(8): 364-375.
CHEN S G, TANG B, WANG K . Twin delayed deep deterministic policy gradient-based intelligent computation offloading for IoT[J]. Digital Communications and Networks, 2022,doi.org/10.1016/j.dcan.2022.06.008.
MUKHERJEE M, KUMAR V, KUMAR S ,et al. Computation offloading strategy in heterogeneous fog computing with energy and delay constraints[C]// Proceedings of 2020 IEEE International Conference on Communications (ICC). Piscataway:IEEE Press, 2020: 1-5.
CHANG Z, LIU L, GUO X ,et al. Dynamic resource allocation and computation offloading for IoT fog computing system[J]. IEEE Transactions on Industrial Informatics, 2021,17(5): 3348-3357.
LI S L, TAO Y Z, QIN X Q ,et al. Energy-aware mobile edge computation offloading for IoT over heterogenous networks[J]. IEEE Access, 2019(7): 13092-13105.
CHEN X H, CAI Y L, SHI Q J ,et al. Efficient resource allocation for relay-assisted computation offloading in mobile-edge computing[J]. IEEE Internet of Things Journal, 2020,7(3): 2452-2468.
NGUYEN P D, LE L B . Joint computation offloading,SFC placement,and resource allocation for multi-site MEC systems[C]// Proceedings of 2020 IEEE Wireless Communications and Networking Conference. Piscataway:IEEE Press, 2020: 1-6.
LI Q, SHAO H Q . Cooperative resource allocation for computation offloading in mobile-edge computing networks[C]// Proceedings of 2021 IEEE Wireless Communications and Networking Conference. Piscataway:IEEE Press, 2021: 1-6.
CHEN S G, ZHENG Y M, LU W F ,et al. Energy-optimal dynamic computation offloading for industrial IoT in fog computing[J]. IEEE Transactions on Green Communications and Networking, 2020,4(2): 566-576.
CHEN J, CHANG Z, GUO X J ,et al. Resource allocation and computation offloading for multi-access edge computing with fronthaul and backhaul constraints[J]. IEEE Transactions on Vehicular Technology, 2021,70(8): 8037-8049.
WANG F, XING H, XU J . Real-time resource allocation for wireless powered multiuser mobile edge computing with energy and task causality[J]. IEEE Transactions on Communications, 2020,68(11): 7140-7155.
LIN Z F, WANG F, LIU L C . Computation rate maximization for multiuser mobile edge computing systems with dynamic energy arrivals[C]// Proceedings of 2021 IEEE/CIC International Conference on Communications in China (ICCC). Piscataway:IEEE Press, 2021: 312-317.
WANG W P, FENG G S, LI B Y ,et al. An online computation offloading with energy-harvesting in mobile ad hoc network[C]// Proceedings of 2019 IEEE International Conference on Smart Internet of Things (SmartIoT). Piscataway:IEEE Press, 2019: 22-27.
LI C L, TANG J H, ZHANG Y ,et al. Energy efficient computation offloading for nonorthogonal multiple access assisted mobile edge computing with energy harvesting devices[J]. Computer Networks, 2019(164): 1-12.
LI H, XIONG K, LU Y ,et al. Distributed design of wireless powered fog computing networks with binary computation offloading[J]. IEEE Transactions on Mobile Computing, 2021(99):1.
BOZORGCHENANI A, TARCHI D, CORAZZA G E . Computation offloading decision bounds in SWIPT-based fog networks[C]// Proceedings of 2019 IEEE Global Communications Conference. Piscataway:IEEE Press, 2019: 1-6.
YU Z Y, XU G C, LI Y ,et al. Joint offloading and energy harvesting design in multiple time blocks for FDMA based wireless powered MEC[J]. Future Internet, 2021,13(3): 70.
YANG Z H, HOU J C, SHIKH-BAHAEI M, . Resource allocation in full-duplex mobile-edge computation systems with NOMA and energy harvesting[C]// Proceedings of ICC 2019 - 2019 IEEE International Conference on Communications. Piscataway:IEEE Press, 2019: 1-6.
ZHOU F H, HU R Q . Computation efficiency maximization in wireless-powered mobile edge computing networks[J]. IEEE Transactions on Wireless Communications, 2020,19(5): 3170-3184.
LU P, HUANG K M, SONG C Y ,et al. Optimal power splitting of wireless information and power transmission using a novel dual-channel rectenna[J]. IEEE Transactions on Antennas and Propagation, 2022,70(3): 1846-1856.
ZHU C, TAO J, PASTOR G ,et al. Folo:latency and quality optimized task allocation in vehicular fog computing[J]. IEEE Internet of Things Journal, 2019,6(3): 4150-4161.
0
浏览量
114
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构