浏览全部资源
扫码关注微信
[ "戴林燕(1998- ),女,西南交通大学信息科学与技术学院硕士生,主要研究方向为Wi-Fi网络MAC层算法" ]
[ "方旭明(1962- ),男,博士,西南交通大学信息科学与技术学院教授,主要研究方向为通信感知计算一体化网络、Wi-Fi网络、智能交通移动通信系统等" ]
[ "何蓉(1974- ),女,博士,西南交通大学信息科学与技术学院副教授,主要研究方向为通信感知计算一体化网络、Wi-Fi网络、无线资源分配等" ]
纸质出版日期:2023-09-30,
网络出版日期:2023-09,
移动端阅览
戴林燕, 方旭明, 何蓉. Wi-Fi 7多链路高能效联合传输优化策略[J]. 物联网学报, 2023,7(3):42-52.
LINYAN DAI, XUMING FANG, RONG HE. Optimization strategy of multi-link energy efficient joint transmission of Wi-Fi 7. [J]. Chinese journal on internet of things, 2023, 7(3): 42-52.
戴林燕, 方旭明, 何蓉. Wi-Fi 7多链路高能效联合传输优化策略[J]. 物联网学报, 2023,7(3):42-52. DOI: 10.11959/j.issn.2096-3750.2023.00328.
LINYAN DAI, XUMING FANG, RONG HE. Optimization strategy of multi-link energy efficient joint transmission of Wi-Fi 7. [J]. Chinese journal on internet of things, 2023, 7(3): 42-52. DOI: 10.11959/j.issn.2096-3750.2023.00328.
下一代Wi-Fi 7协议多链路非同步传输与接收模式下,多链路设备(MLD
multi-link device)在各个链路的传输结束时间需要对齐,可能需要进行数据填充(padding),从而导致频谱资源和能量的浪费。提出了一种MLD高能效传输算法,在满足数据传输时延限制的前提下,提高MLD站点(STA
station)总能效。所提算法分别从链路数据分发比例、通信资源与STA发送功率3个方面进行优化。仿真结果显示,所提算法在保证数据传输时延限制的前提下,通过减少padding数据降低能耗,使系统传输能效相较于基线方案提升约150%。
In the multi-link non-simultaneous transmit and receive mode of next-generation Wi-Fi 7 protocol
the transmission ending time of multi-link device (MLD) needs to be aligned on each link
which may require data padding
resulting in the waste of spectrum resources and transmission energy consumption.A high energy efficient MLD transmission algorithm was proposed to improve the total energy efficiency of MLD station (STA) on the premise of meeting the data transmission delay limit.The proposed algorithm was optimized from the following three aspects: link data distribution ratio
communication resource allocation and STA transmission power.Simulation results show that the proposed algorithm can reduce energy consumption by reducing padding data on the premise of guaranteeing the delay limit of data transmission
and the transmission energy efficiency of the system is increased by about 150% compared with that of the baseline scheme.
Wi-Fi7多链路能效数据填充粒子群优化
Wi-Fi 7multi-linkenergy efficientdata paddingparticle swarm optimization
DENG C L, FANG X M, HAN X ,et al. IEEE 802.11be Wi-Fi 7:new challenges and opportunities[J]. IEEE Communications Surveys &Tutorials, 2020,22(4): 2136-2166.
YANG M, LI B, YAN Z J ,et al. AP coordination and full-duplex enabled multi-band operation for the next generation WLAN:IEEE 802.11be (EHT)[C]// Proceedings of 2019 11th International Conference on Wireless Communications and Signal Processing (WCSP). Piscataway:IEEE Press, 2019: 1-7.
WILHELMSSON L R, LOPEZ M M, SUNDMAN D . NB-WiFi:IEEE 802.11 and bluetooth low energy combined for efficient support of IoT[C]// Proceedings of 2017 IEEE Wireless Communications and Networking Conference (WCNC). Piscataway:IEEE Press, 2017: 1-6.
IEEE. Multi-link power saving discussion:IEEE 802.11-20/0070r1[S]. 2020.
KHOROV E, LEVITSKY I, AKYILDIZ I F . Current status and directions of IEEE 802.11be,the future Wi-Fi 7[J]. IEEE Access, 2020(8): 88664-88688.
IEEE. Channel access for multi-link operation:IEEE 802.11-19/1144r6[S]. 2019.
KOROLEV N, LEVITSKY I, KHOROV E . Analyses of NSTR multi-link operation in the presence of legacy devices in an IEEE 802.11 be network[C]// Proceedings of 2021 IEEE Conference on Standards for Communications and Networking (CSCN). Piscataway:IEEE Press, 2022: 94-98.
NAIK G, PARK J M, ASHDOWN J ,et al. Next generation Wi-Fi and 5G NR-U in the 6 GHz bands:opportunities and challenges[J]. IEEE Access, 2020(8): 153027-153056.
IEEE. Draft standard for Information technology— telecommunications and information exchange between systems local and metropolitan area networks— specific requirements,wireless LAN medium access control(MAC) and physical layer (PHY) specifications,amendment 8:enhancements for extremely high throughput (EHT):IEEE P802.11beTM/D1.2[S]. 2021.
IEEE. MLO asynch qsynch synch:IEEE 802.11-19/1916r0[S]. 2019.
IEEE. Draft standard for information technology— telecommunications and information exchange between systems local and metropolitan area networks—specific requirements,part 11:wireless LAN medium access control (MAC) and physical layer (PHY) specifications,amendment 1:enhancements for high efficiency WLAN:IEEE P802.11axTM/D5.1[S]. 2019.
LIU D C, WANG H N, ZHOU G ,et al. Arbitrating traffic contention for power saving with multiple PSM clients[J]. IEEE Transactions on Wireless Communications, 2016,15(10): 7030-7043.
BORIS , BELLALTA . AP-initiated multi-user transmissions in IEEE 802.11ax WLANs[J]. Ad Hoc Networks, 2019,85: 145-159.
IEEE. MLO:broadcast TWT for MLDs:IEEE 802.11-21/0394r2[S]. 2021.
JEONG K C, CHOI W S, CHOI S G . A wireless AP power saving algorithm by changing operating mode and altering transmission power in IEEE 802.11 WLAN[C]// Proceedings of 2014 International Conference on Information and Communication Technology Convergence (ICTC). Piscataway:IEEE Press, 2014: 9-10.
YANG H, DENG D J, CHEN K C . On energy saving in IEEE 802.11ax[J]. IEEE Access, 2018(6): 47546-47556.
IEEE. EHT power saving considering multi-link:IEEE 802.11-19/1510r6[S]. 2019.
FANG L, XUE G T, LYU F ,et al. Intelligent large-scale AP control with remarkable energy saving in campus Wi-Fi system[C]// Proceedings of 2018 IEEE 24th International Conference on Parallel and Distributed Systems (ICPADS). Piscataway:IEEE Press, 2019: 69-76.
IEEE. Multi-link power save-link bitmap:IEEE 802.11-20/ 0085r1[S]. 2020.
XU C, HAN Z Z, ZHAO G F ,et al. A sleeping and offloading optimization scheme for energy-efficient WLANs[J]. IEEE Communications Letters, 2017,21(4): 877-880.
CHEN Q H, LIANG G X, WENG Z Q . A target wake time based power conservation scheme for maximizing throughput in IEEE 802.11ax WLANs[C]// Proceedings of 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS). Piscataway:IEEE Press, 2020: 217-224.
IEEE. MLO:link management–follow up:IEEE 802.11-19/1904r3[S]. 2020.
IEEE. Multi-link power save operation:IEEE 802.11-19/1544r5[S]. 2020.
IEEE. Multi-link TIM:IEEE 802.11-20/0066r3[S]. 2020.
KENNEDY J, EBERHART R . Particle swarm optimization[C]// Proceedings of ICNN’95 - International Conference on Neural Networks. Piscataway:IEEE Press, 2002: 1942-1948.
CHEN L . Particle swarm optimization with a novel mutation operator[C]// Proceedings of 2011 International Conference on Mechatronic Science,Electric Engineering and Computer (MEC). Piscataway:IEEE Press, 2011: 970-973.
SZCZYPIORSKI K, MAZURCZYK W . Steganography in IEEE 802.11 OFDM symbols[J]. Security and Communication Networks, 2016,9(2): 118-129.
彭喜元, 彭宇, 戴毓丰 . 群智能理论及应用[J]. 电子学报, 2003,31(S1): 1982-1988.
PENG X Y, PENG Y, DAI Y F . Swarm intelligence theory and applications[J]. Acta Electronica Sinica, 2003,31(S1): 1982-1988.
张俊溪, 张嘉桐, 张玉梅 . 一种改进的粒子群优化算法[J]. 陕西师范大学学报(自然科学版), 2016,44(2): 15-20.
ZHANG J X, ZHANG J T, ZHANG Y M . An improved particle swarm optimization algorithm[J]. Journal of Shaanxi Normal University (Natural Science Edition), 2016,44(2): 15-20.
0
浏览量
354
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构