浏览全部资源
扫码关注微信
[ "王珺(1975- ),女,博士,南京邮电大学副教授,主要研究方向为物联网、边缘计算、下一代网络等" ]
[ "马建炜(1999- ),男,南京邮电大学通信与信息工程学院硕士生,主要研究方向为边缘计算和区块链" ]
[ "罗金喜(1996- ),男,南京邮电大学通信与信息工程学院硕士生,主要研究方向为边缘计算和区块链" ]
纸质出版日期:2023-12-20,
网络出版日期:2023-12,
移动端阅览
王珺, 马建炜, 罗金喜. 一种应用于边缘计算的区块链分片方案[J]. 物联网学报, 2023,7(4):88-100.
JUN WANG, JIANWEI MA, JINXI LUO. A blockchain sharding scheme in edge computing. [J]. Chinese journal on internet of things, 2023, 7(4): 88-100.
王珺, 马建炜, 罗金喜. 一种应用于边缘计算的区块链分片方案[J]. 物联网学报, 2023,7(4):88-100. DOI: 10.11959/j.issn.2096-3750.2023.00333.
JUN WANG, JIANWEI MA, JINXI LUO. A blockchain sharding scheme in edge computing. [J]. Chinese journal on internet of things, 2023, 7(4): 88-100. DOI: 10.11959/j.issn.2096-3750.2023.00333.
边缘计算的数据安全性低和隐私性差等问题制约了边缘计算的发展,区块链可以利用自身的难以篡改性为边缘计算场景中的数据提供安全保障,同时利用可追溯性保护隐私,但是区块链的扩展性瓶颈成为其应用于边缘计算领域的障碍。针对区块链应用于边缘计算时无法满足大量节点同时处理数据的需求的问题,提出了一种符合边缘计算场景需求的双层分片方案,用改进的K-means算法实现节点基于地理位置的分片,并结合权益委托证明(DPoS
delegated proof of stake)与实用拜占庭容错(PBFT
practical Byzantine fault tolerance)的思想设计了一种局部区块链网络共识(LBNC
local blockchain network consensus)算法达成片内共识,通过多分片并行处理交易的方式提高系统能容纳的节点数量。仿真结果表明,所提方案比PBFT有更低的时延和更高的吞吐量,并且总吞吐量随分片数量增加。
The low security and poor privacy of the data in edge computing restrict the development of edge computing.Block chains can provide security for data in edge computing using their own tamper resistance
while protecting privacy by use of traceability.But the bottleneck of blockchain's scalability has become a barrier to their application in the field of edge computing.To solve the problem that blockchain can not meet the needs of a large number of nodes to process data at the same time when applied to edge computing
a two-layer sharding scheme was presented
which meets the needs of edge computing scenarios.Geographic location-based partitioning of nodes was implemented using the improved K-means algorithm
and a local blockchain network consensus (LBNC) algorithm was designed based on the idea of delegated proof of stake (DPoS) and practical Byzantine fault tolerance (PBFT).Simulation results show that the proposed scheme has less delay and higher throughput than those of PBFT
and the total throughput increases with the number of shards.
区块链分片边缘计算共识
blockchainshardingedge computingconsensus
DORRI A, KANHERE S S, JURDAK R . Towards an optimized blockchain for IoT[C]// Proceedings of 2017 IEEE/ACM Second International Conference on Internet-of-Things Design and Implementation (IoTDI). Piscataway:IEEE Press, 2017: 173-178.
CHRISTIDIS K, DEVETSIKIOTIS M . Blockchains and smart contracts for the internet of things[J]. IEEE Access, 2016,4: 2292-2303.
TAN L, SHI N, YU K P ,et al. A blockchain-empowered access control framework for smart devices in green internet of things[J]. ACM Transactions on Internet Technology, 2021,21(3): 1-20.
CHEN Z Y, TIAN P, LIAO W X ,et al. Zero knowledge clustering based adversarial mitigation in heterogeneous federated learning[J]. IEEE Transactions on Network Science and Engineering, 2021,8(2): 1070-1083.
ZHOU B W, DASTJERDI A V, CALHEIROS R N ,et al. A context sensitive offloading scheme for mobile cloud computing service[C]// Proceedings of 2015 IEEE 8th International Conference on Cloud Computing. Piscataway:IEEE Press, 2015: 869-876.
WANG H, XIE Q, ZHAO Q ,et al. A model-driven deep neural network for single image rain removal[C]// Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2020: 3100-3109.
ZHANG Z H, FENG J, PEI Q Q ,et al. Integration of communication and computing in blockchain-enabled multi-access edge computing systems[J]. China Communications, 2021,18(12): 297-314.
REN Y J, LENG Y, CHENG Y P ,et al. Secure data storage based on blockchain and coding in edge computing[J]. Mathematical Biosciences and Engineering:MBE, 2019,16(4): 1874-1892.
FERNÁNDEZ-CARAMÉS T M, FRAGA-LAMASP . A review on the use of blockchain for the internet of things[J]. IEEE Access, 2018(6): 32979-33001.
LUU L, NARAYANAN V, ZHENG C D ,et al. A secure sharding protocol for open blockchains[C]// Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. New York:ACM Press, 2016: 17-30.
WANG J, WANG H. MONOXIDE . Scale out blockchains with asynchronous consensus zones[EB]. 2019.
REN Z J, CONG K L, AERTS T ,et al. A scale-out blockchain for value transfer with spontaneous sharding[C]// Proceedings of 2018 Crypto Valley Conference on Blockchain Technology (CVCBT). Piscataway:IEEE Press, 2018: 1-10.
GUO H, LI W X, NEJAD M ,et al. Access control for electronic health records with hybrid blockchain-edge architecture[C]// Proceedings of 2019 IEEE International Conference on Blockchain (Blockchain). Piscataway:IEEE Press, 2020: 44-51.
GAI K K, WU Y L, ZHU L H ,et al. Differential privacy-based blockchain for industrial internet of things[J]. IEEE Transactions on Industrial Informatics, 2020,16(6): 4156-4165.
ZHOU Z Y, WANG B C, DONG M X ,et al. Secure and efficient vehicle-to-grid energy trading in cyber physical systems:integration of blockchain and edge computing[J]. IEEE Transactions on Systems,Man,and Cybernetics:Systems, 2020,50(1): 43-57.
LI C, LIANG S Y, ZHANG J . Blockchain-based data trading in edge-cloud computing environment[J]. Information Processing &Management, 2022,59(1): 102786.
XU X L, ZHANG X Y, GAO H H ,et al. BeCome:blockchain-enabled computation offloading for IoT in mobile edge computing[J]. IEEE Transactions on Industrial Informatics, 2020,16(6): 4187-4195.
KOKORIS-KOGIASE , JOVANOVIC P, GASSER L ,et al. O mniLedger:asecure,scale-out,decentralized ledger via sharding[C]// Proceedings of 2018 IEEE Symposium on Security and Privacy (SP). Piscataway:IEEE Press, 2018: 583-598.
DANG H, DINH T T A, LOGHIN D ,et al. Towards scaling blockchain systems via sharding[C]// Proceedings of the 2019 International Conference on Management of Data. New York:ACM Press, 2019: 123-140.
SABT M, ACHEMLAL M, BOUABDALLAH A . Trusted execution environment:what it is,and what it is not[C]// Proceedings of 2015 IEEE Trustcom/BigDataSE/ISPA. Piscataway:IEEE Press, 2015: 57-64.
YANG L, ZHOU W, ZHANG W . EdgeShare:a blockchain-based edge data-sharing framework for industrial internet of things[J]. Neurocom puting, 2022,485: 219-232.
ZHANG L, ZHOU Y, WANG W . Resource allocation and trust computing for blockchain-enabled edge computing system[J]. Computers&Security, 2021,105:102249.
GAO N J, HUO R, WANG S ,et al. Sharding-hashgraph:a high-performance blockchain-based framework for industrial internet of things with hashgraph mechanism[J]. IEEE Internet of Things Journal, 2022,9(18): 17070-17079.
刘炜, 阮敏捷, 佘维 ,等. 面向物联网的PBFT优化共识算法[J]. 计算机科学, 2021,48(11): 151-158.
LIU W, RUAN M J, SHE W ,et al. PBFT optimized consensus algorithm for internet of things[J]. Computer Science, 2021,48(11): 151-158.
SINAGA K P, YANG M S . Unsupervised K-means clustering algorithm[J]. IEEE Access, 2020(8): 80716-80727.
BUCHMAN E, KWON J, MILOSEVIC Z ,et al. The latest gossip on BFT consensus[EB]. 2018.
AVCI O, ABDELJABER O, KIRANYAZ S . Wireless and real-time structural damage detection:a novel decentralized method for wireless sensor networks[J]. Journal of Sound and Vibration, 2018,424: 158-172.
MICALI S, RABIN M, VADHAN S . Verifiable random functions[C]// Proceedings of 40th Annual Symposium on Foundations of Computer Science (Cat.No.99CB37039). Piscataway:IEEE Press, 2002: 120-130.
ANDROULAKI E, BARGER A, BORTNIKOV V ,et al. Hyperledger fabric:a distributed operating system for permissioned blockchains[C]// Proceedings of the Thirteenth EuroSysConference. New York:ACM Press, 2018: 1-15.
LUO C R, HU Y Y, ZHANG S ,et al. Fission:autonomous,scalable sharding for IoT blockchain[C]// Proceedings of 2022 IEEE 46th Annual Computers,Software,and Applications Conference (COMPSAC). Piscataway:IEEE Press, 2022: 956-965.
0
浏览量
81
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构