浏览全部资源
扫码关注微信
1. 西安电子科技大学综合业务网理论及关键技术国家重点实验室,陕西 西安 710071
2. 鹏城实验室,广东 深圳 518055
[ "张夏雨(2000- ),男,西安电子科技大学博士生,主要研究方向为B5G/6G移动通信网络技术" ]
[ "李建东(1962- ),男,博士,西安电子科技大学教授,主要研究方向为智慧/智能互联网络技术、新一代认知/智能无线自组织网络技术、新一代无线移动通信/超密集异构无线网络以及空间信息网络/卫星互联网的架构和组网技术等" ]
[ "刘俊宇(1989- ),男,博士,西安电子科技大学副教授,主要研究方向为异构密集无线网络容量理论及组网技术、天地一体化网络智能组网技术、室内定位技术等" ]
[ "盛敏(1975- ),女,博士,西安电子科技大学教授,主要研究方向为空间信息网络、移动通信网络、异构网络融合、无线自组织网络等" ]
[ "史琰(1975- ),男,博士,西安电子科技大学教授,主要研究方向为智能网络、空间信息网络、高性能通信与计算协同等" ]
[ "解子文(1996- ),男,西安电子科技大学博士生,主要研究方向为立体致密无线网络容量覆盖增强技术" ]
纸质出版日期:2023-03-30,
网络出版日期:2023-03,
移动端阅览
张夏雨, 李建东, 刘俊宇, 等. 资源小区——面向下一代超密集网络的无线覆盖结构[J]. 物联网学报, 2023,7(1):1-17.
XIAYU ZHANG, JIANDONG LI, JUNYU LIU, et al. Resource cell-wireless coverage structure for next-generation ultra-dense networks. [J]. Chinese journal on internet of things, 2023, 7(1): 1-17.
张夏雨, 李建东, 刘俊宇, 等. 资源小区——面向下一代超密集网络的无线覆盖结构[J]. 物联网学报, 2023,7(1):1-17. DOI: 10.11959/j.issn.2096-3750.2023.00336.
XIAYU ZHANG, JIANDONG LI, JUNYU LIU, et al. Resource cell-wireless coverage structure for next-generation ultra-dense networks. [J]. Chinese journal on internet of things, 2023, 7(1): 1-17. DOI: 10.11959/j.issn.2096-3750.2023.00336.
随着移动用户对高速数据传输业务的需求不断增加,移动通信系统在局部区域容量覆盖能力不足的问题日益显著。为了消除容量覆盖空洞,克服网络的复杂干扰,提出了资源小区覆盖结构。该覆盖结构具有弹性可扩展、高能效按需覆盖的特点,以干扰管控为基础,形成面向容量覆盖和能量覆盖的基本空间单元,实现业务分布、能量分布与覆盖结构的相互适配。依托上述覆盖结构,进一步研究了面向容量覆盖的资源小区生成方法,通过宏观上覆盖结构的动态调整以及网络资源随业务变化的按需高效流转,实现了均匀的接入点部署结构对非均匀业务分布的高效覆盖。仿真和实测结果表明,相比于传统静态覆盖方法,所提资源小区的生成方法消除了容量覆盖空洞,提高了整网的峰值传输速率,有效提升了网络的容量覆盖能力。
With the increasing demand of mobile users for high-speed data transmission services
the problem of insufficient capacity coverage of mobile communication systems in local areas is becoming increasingly prominent.Aiming to eliminate the capacity coverage hole and overcome the complex interference of the network
the resource cell coverage structure was proposed.The coverage structure has the characteristics of elastic scalability and is capable of providing on-demand energy-efficient coverage.Based on the interference management
a basic spatial unit for capacity coverage and energy coverage was formed
and the mutual adaptation of service distribution
energy distribution and coverage structure were realized.Relying on the above coverage structure
a resource cell generation (RCG) method was proposed to enhance capacity coverage.Through dynamically adjusting the coverage structure and providing on-demand network resources
the RCG method could achieve efficient capacity coverage for the uneven service distribution under uniform access point deployment.Simulation and experimental results show that
compared with the traditional static coverage method
the RCG method eliminates the capacity coverage hole
improves the network throughput
and enhances the capacity coverage capability of the network.
资源小区超密集网络容量覆盖能量覆盖
resource cellultra-dense networkcapacity coverageenergy coverage
IMT-2030 (6G) 推进组. 6G总体愿景与潜在关键技术白皮书[R]. 2021.
IMT-2030 (6G) Promotion Group. 6G overall vision and potential key technologies white paper[R]. 2021.
YOU X H, WANG C X, HUANG J ,et al. Towards 6G wireless communication networks:vision,enabling technologies,and new paradigm shifts[J]. Science China Information Sciences, 2021,64(1): 110301.
ROST P, BANCHS A, BERBERANA I ,et al. Mobile network architecture evolution toward 5G[J]. IEEE Communications Magazine, 2016,54(5): 84-91.
张平, 张建华, 戚琦 ,等. Ubiquitous-X:构建未来6G网络[J]. 中国科学:信息科学, 2020,50(6): 913-930.
ZHANG P, ZHANG J H, QI Q ,et al. Ubiquitous-X:constructing the future 6G networks[J]. Scientia Sinica (Informationis), 2020,50(6): 913-930.
牛志升, 周盛, 周世东 ,等. 能效与资源优化的超蜂窝移动通信系统新架构及其技术挑战[J]. 中国科学:信息科学, 2012,42(10): 1191-1203.
NIU Z S, ZHOU S, ZHOU S D ,et al. Energy efficiency and resource optimized hyper-cellular mobile communication system architecture and its technical challenges[J]. Scientia Sinica (Informationis), 2012,42(10): 1191-1203.
李莉, 彭木根, 王文博 . 下一代宽带移动通信系统中的网络自组织技术[J]. 电信技术, 2010(5): 71-73.
LI L, PENG M G, WANG W B . Network self-organization technology in the next generation broadband mobile communication system[J]. Telecommunications Technology, 2010(5): 71-73.
ZHANG P, TAO X F, ZHANG J H ,et al. A vision from the future:beyond 3G TDD[J]. IEEE Communications Magazine, 2005,43(1): 38-44.
ZHOU S, ZHAO T, NIU Z S ,et al. Software-defined hyper-cellular architecture for green and elastic wireless access[J]. IEEE Communications Magazine, 2016,54(1): 12-19.
中国移动通信研究院. C-RAN白皮书:迈向5G C-RAN:需求、架构与挑战[R]. 2016.
China Mobile Communication Research Institute. C-RAN white paper:towards 5G C-RAN:requirements,architecture and challenges[R]. 2016.
HUQKMS , MUMTAZS , RODRIGUEZ J . A C-RAN approach for 5G applications[M]// Backhauling/Fronthauling for Future Wireless Systems. Chichester: John Wiley & Sons,Ltd, 2016: 9-28.
DALLA-COSTAA G, BONDAN L, WICKBOLDTJ A ,et al. Orchestra:a customizable split-aware NFV orchestrator for dynamic cloud radio access networks[J]. IEEE Journal on Selected Areas in Communications, 2020,38(6): 1014-1024.
PENG M G, YAN S, ZHANG K C ,et al. Fog-computing-based radio access networks:issues and challenges[J]. IEEE Network, 2016,30(4): 46-53.
刘晨熙, 刘炳宏, 张贤 ,等. 面向智能服务的雾无线接入网络:原理、技术与挑战[J]. 智能科学与技术学报, 2021,3(1): 10-17.
LIU C X, LIU B H, ZHANG X ,et al. Intelligent service oriented fog radio access network:principles,technologies and challenges[J]. Chinese Journal of Intelligent Science and Technology, 2021,3(1): 10-17.
NGO H Q, ASHIKHMIN A, YANG H ,et al. Cell-free massive MIMO versus small cells[J]. IEEE Transactions on Wireless Communications, 2017,16(3): 1834-1850.
ZHANG J Y, CHEN S F, LIN Y ,et al. Cell-free massive MIMO:anew next-generation paradigm[J]. IEEE Access, 2019,7: 99878-99888.
JIANG W, HAN B, HABIBIM A ,et al. The road towards 6G:a comprehensive survey[J]. IEEE Open Journal of the Communications Society, 2021,2: 334-366.
BHUSHAN N, LI J Y, MALLADI D ,et al. Network densification:the dominant theme for wireless evolution into 5G[J]. IEEE Communications Magazine, 2014,52(2): 82-89.
CHECKO A, CHRISTIANSEN H L, YAN Y ,et al. Cloud RAN for mobile networks—a technology overview[J]. IEEE Communications Surveys & Tutorials, 2015,17(1): 405-426.
NGO H Q, ASHIKHMINA , YANG H ,et al. Cell-free massive MIMO:uniformly great service for everyone[C]// Proceedings of 2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). Piscataway:IEEE Press, 2015: 201-205.
BUZZIS D’ANDREA C . Cell-free massive MIMO:user-centric approach[J]. IEEE Wireless Communications Letters, 2017,6(6): 706-709.
XIE Z W, LIU J Y, SHENG M ,et al. Exploiting aerial computing for air-to-ground coverage enhancement[J]. IEEE Wireless Communications, 2021,28(5): 50-58.
3GPP. Overall procedures in gNB-CU/gNB-DU architecture[S]. 2018.
3GPP. Base station (BS) radio transmission and reception[S]. 2021.
DING M, WANG P, LÓPEZ-PÉREZ D, ,et al. Performance impact of LoS and NLoS transmissions in dense cellular networks[J]. IEEE Transactions on Wireless Communications, 2016,15(3): 2365-2380.
LIU J Y, SHENG M, LIU L ,et al. Performance of small cell networks under multi-slope bounded path loss model:from sparse to ultradensedeployment[J]. IEEE Transactions on Vehicular Technology, 2018,67(11): 11022-11034.
DAI Y P, LIUJY , SHENG M ,et al. Joint optimization of BS clustering and power control for NOMA-enabled CoMP transmission in dense cellular networks[J]. IEEE Transactions on Vehicular Technology, 2021,70(2): 1924-1937.
CHEN S Y, LIUXQ , ZHAO T Y ,et al. Performance analysis of joint transmission schemes in ultra-dense networks–A unified approach[J]. IEEE/ACM Transactions on Networking, 2020,28(1): 154-167.
GARCÍA-MORALESJ , FEMENIASG RIERA-PALOU F . Energy-efficient access-point sleep-mode techniques for cell-free mmWave massive MIMO networks with non-uniform spatial traffic density[J]. IEEE Access, 2020,8: 137587-137605.
LÓPEZ-PÉREZ D, DE DOMENICO A, PIOVESAN N ,et al. A survey on 5G radio access network energy efficiency:massive MIMO,lean carrier design,sleep modes,and machine learning[J]. IEEE Communications Surveys & Tutorials, 2022,24(1): 653-697.
陈新颖, 盛敏, 李博 ,等. 面向6G的无人机通信综述[J]. 电子与信息学报, 2022,44(3): 781-789.
CHEN X Y, SHENG M, LI B ,et al. Survey on unmanned aerial vehicle communications for 6G[J]. Journal of Electronics & Information Technology, 2022,44(3): 781-789.
闫实, 彭木根, 王文博 . 通信-感知-计算融合:6G愿景与关键技术[J]. 北京邮电大学学报, 2021,44(4): 1-11.
YAN S, PENG M G, WANG W B . Integration of communication,sensing and computing:the vision and key technologies of 6G[J]. Journal of Beijing University of Posts and Telecommunications, 2021,44(4): 1-11.
段晓东, 姚惠娟, 付月霞 ,等. 面向算网一体化演进的算力网络技术[J]. 电信科学, 2021,37(10): 76-85.
DUAN X D, YAO H J, FU Y X ,et al. Computing force network technologies for computing and network integration evolution[J]. Telecommunications Science, 2021,37(10): 76-85.
WANG H, LIU C, SHI Z ,et al. On power minimization for IRS-aided downlink NOMA systems[J]. IEEE Wireless Communications Letters, 2020,9(11): 1808-1811.
LI Z D, CHEN W, WU Q Q ,et al. Joint beamforming design and power splitting optimization in IRS-assisted SWIPT NOMA networks[J]. IEEE Transactions on Wireless Communications, 2022,21(3): 2019-2033.
ZHANG S J, JIN S, WEN C K ,et al. Improving expectation propagation with lattice reduction for massive MIMO detection[J]. China Communications, 2018,15(12): 49-54.
HAN S F, CHIH-LIN I, XU Z K ,et al. Reference signals design for hybrid analog and digital beamforming[J]. IEEE Communications Letters, 2014,18(7): 1191-1193.
YOUNIS O, FAHMY S . HEE D:a hybrid,energy-efficient,distributed clustering approach for ad hoc sensor networks[J]. IEEE Transactions on Mobile Computing, 2004,3(4): 366-379.
0
浏览量
193
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构