浏览全部资源
扫码关注微信
1. 东南大学毫米波国家重点实验室,江苏 南京 210096
2. 网络通信与安全紫金山实验室,江苏 南京 211111
3. 华为技术有限公司,广东 深圳 518129
[ "范敏(1999- ),男,东南大学信息科学与工程学院博士生,主要研究方向为无线通信高能效传输技术" ]
[ "邵思源(1998- ),男,东南大学信息科学与工程学院硕士生,主要研究方向为通信感知一体化技术" ]
[ "贺超(1989- ),男,博士,华为技术有限公司毫米波Wi-Fi接入研究员,主要研究方向为毫米波通信系统设计与算法" ]
[ "王祥(1982- ),男,博士,华为技术有限公司家庭网络首席研究员,ITU-T SG9 WP2副主席、SG9 Q9报告人、SG15 Q4编辑,主要研究方向为铜线接入和家庭短距无线通信技术研究与标准" ]
[ "王海明(1975- ),男,博士,东南大学信息科学与工程学院教授,主要研究方向为智能微波工程、电波测量与信道建模、通信感知定位一体化" ]
纸质出版日期:2023-09-30,
网络出版日期:2023-09,
移动端阅览
范敏, 邵思源, 贺超, 等. 下一代毫米波无线局域网:愿景与关键使能技术[J]. 物联网学报, 2023,7(3):1-14.
MIN FAN, SIYUAN SHAO, CHAO HE, et al. Next-generation mmWave WLAN: vision and key enabling technologies. [J]. Chinese journal on internet of things, 2023, 7(3): 1-14.
范敏, 邵思源, 贺超, 等. 下一代毫米波无线局域网:愿景与关键使能技术[J]. 物联网学报, 2023,7(3):1-14. DOI: 10.11959/j.issn.2096-3750.2023.00354.
MIN FAN, SIYUAN SHAO, CHAO HE, et al. Next-generation mmWave WLAN: vision and key enabling technologies. [J]. Chinese journal on internet of things, 2023, 7(3): 1-14. DOI: 10.11959/j.issn.2096-3750.2023.00354.
随着信息通信技术的快速发展和广泛部署,人类的生产生活以及社会治理向数字化、信息化、智能化方向不断深入演进。作为应用最广泛的无线通信技术之一,无线局域网(WLAN
wireless local area network)需要在吞吐量、可靠性、时延等关键性能上进一步突破,同时还需要具备感知、智能等新特性。毫米波(mmWave
millimeter wave)巨大的频率资源为无线局域网发展注入了新动能,但同时也带来了新的技术挑战和需求。首先,回顾了无线局域网的发展历程;其次,描述了未来无线局域网的网络结构、典型应用、发展方向和性能指标要求;然后,分析了毫米波频段无线信道特性及其对无线网络设计的新要求、新挑战;最后,对能够适应这些挑战和要求的一些潜在关键技术进行了探讨和展望。
With the rapid development and wide applications of information and communication technologies
human production and life and social governance are evolving in the direction of digitizing
informatization
and intelligence.As one of the most widely applied wireless communication technologies
the wireless local area network (WLAN) needs to make further breakthroughs in the key performance such as data throughput
reliability
and latency and needs to add sensing functions and intelligence.The huge frequency resources of the millimeter wave (mmWave) band have injected new momentum into the development of WLAN.But the mmWave WLAN has also brought new technical challenges and requirements.Firstly
the WLAN development history was reviewed
and network structures
typical applications
development directions
and performance index requirements of WLAN in the future were summarized.Then
the characteristics of wireless channels in the mmWave band were given
and the new requirements and challenges for mmWave WLAN design were analyzed.Finally
some potential key technologies that may meet these challenges and requirements were discussed and prospected.
无线局域网毫米波中心化/云无线—光接入网分布式网络架构通信感知一体化
WLANmmWavecentralized/cloud wireless-optical access networkdistributed network architectureintegrated sensing and communications
FAROOQ M U, WASEEM M, MAZHAR S ,et al. A review on internet of things (IoT)[J]. International Journal of Computer Applications, 2015,113(1): 1-7.
DENIZ ULUSAR U, AL-TURJMAN F, CELIK G . An overview of internet of things and wireless communications[C]// Proceedings of 2017 International Conference on Computer Science and Engineering (UBMK). Piscataway:IEEE Press, 2017: 506-509.
PAHLAVAN K, KRISHNAMURTHY P . Evolution and impact of Wi-Fi technology and applications:a historical perspective[J]. International Journal of Wireless Information Networks, 2021,28(1): 3-19.
BELLALTA B . IEEE 802.11ax:high-efficiency WLANS[J]. IEEE Wireless Communications, 2016,23(1): 38-46.
DENGLER S, AWAD A, DRESSLER F . Sensor/actuator networks in smart homes for supporting elderly and handicapped people[C]// Proceedings of 21st International Conference on Advanced Information Networking and Applications Workshops (AINAW'07). Piscataway:IEEE Press, 2007: 863-868.
HONG W, HE S W, WANG H M ,et al. An overview of China millimeter-wave multiple Gigabit wireless local area network system[J]. IEICE Transactions on Communications, 2018,E101.B(2): 262-276.
HONG W, JIANG Z H, YU C ,et al. The role of millimeter-wave technologies in 5G/6G wireless communications[J]. IEEE Journal of Microwaves, 2021,1(1): 101-122.
SHASTRI A, VALECHA N, BASHIROV E ,et al. A review of millimeter wave device-based localization and device-free sensing technologies and applications[J]. IEEE Communications Surveys & Tutorials, 2022,24(3): 1708-1749.
PARK M, CORDEIRO C, PERAHIA E ,et al. Millimeter-wave multi-Gigabit WLAN:challenges and feasibility[C]// Proceedings of 2008 IEEE 19th International Symposium on Personal,Indoor and Mobile Radio Communications. Piscataway:IEEE Press, 2008: 1-5.
NIU Y, LI Y, JIN D P ,et al. A survey of millimeter wave communications (mmWave) for 5G:opportunities and challenges[J]. Wireless Networks, 2015,21(8): 2657-2676.
HEATH R W, GONZÁLEZ-PRELCIC N, RANGAN S ,et al. An overview of signal processing techniques for millimeter wave MIMO systems[J]. IEEE Journal of Selected Topics in Signal Processing, 2016,10(3): 436-453.
KIM J, LEE I . 802.11 WLAN:history and new enabling MIMO techniques for next generation standards[J]. IEEE Communications Magazine, 2015,53(3): 134-140.
CROW B P, WIDJAJA I, KIM J G ,et al. IEEE 802.11 wireless local area networks[J]. IEEE Communications Magazine, 1997,35(9): 116-126.
IEEE 802.11 Working Group and Others. IEEE Std 802.11 b-1999[S]. IEEE Standards, 1999.
IEEE Computer Society LAN/MAN Standards Committee and Others. IEEE Std 802.11 a-1999 (R2003)[S]. Supplement to IEEE Std, 1999(802).
VASSIS D, KORMENTZAS G, ROUSKAS A ,et al. The IEEE 802.11g standard for high data rate WLANs[J]. IEEE Network, 2005,19(3): 21-26.
XIAO Y . IEEE 802.11n:enhancements for higher throughput in wireless LANs[J]. IEEE Wireless Communications, 2005,12(6): 82-91.
ONG E H, KNECKT J, ALANEN O ,et al. IEEE 802.11ac:enhancements for very high throughput WLANs[C]// Proceedings of 2011 IEEE 22nd International Symposium on Personal,Indoor and Mobile Radio Communications. Piscataway:IEEE Press, 2012: 849-853.
DENG C L, FANG X M, HAN X ,et al. IEEE 802.11be Wi-Fi 7:new challenges and opportunities[J]. IEEE Communications Surveys &Tutorials, 2020,22(4): 2136-2166.
NITSCHE T, CORDEIRO C, FLORES A B ,et al. IEEE 802.11ad:directional 60 GHz communication for multi-Gigabit-per-second Wi-Fi[J]. IEEE Communications Magazine, 2014,52(12): 132-141.
GHASEMPOUR Y, DA SILVA C R C M, CORDEIRO C ,et al. IEEE 802.11ay:next-generation 60 GHz communication for 100 Gb/s Wi-Fi[J]. IEEE Communications Magazine, 2017,55(12): 186-192.
WANG H M, HONG W, CHEN J X ,et al. IEEE 802.11aj (45 GHz):a new very high throughput millimeter-wave WLAN system[J]. China Communications, 2014,11(6): 51-62.
RESTUCCIA F . IEEE 802.11bf:toward ubiquitous Wi-Fi sensing[EB]. 2021.
AU E, WILHELMSSON L, BAYKAS T ,et al. Guest editorial:recent and future evolution of Wi-Fi[J]. IEEE Communications Standards Magazine, 2022,6(2): 8-11.
LANANTE L, NAGAO Y, MASAYUKI K ,et al. High precision localization protocol with diversity for 802.11 az[J]. IEICE Technical Report; IEICE Tech.Rep., 2017,117(349): 69-74.
HE C, REN Z X, WANG X ,et al. Millimeter-wave wireless communications for home network in fiber-to-the-room scenario[J]. Frontiers of Information Technology & Electronic Engineering, 2021,22(4): 441-456.
宽带发展联盟. FTTR光纤到房间白皮书(2022年)[EB]. 2022.
Broadband Development Alliance. FTTR fiber to room white paper (2022)[EB]. 2022.
KIM H, FEAMSTER N . Improving network management with software defined networking[J]. IEEE Communications Magazine, 2013,51(2): 114-119.
MEHRPOUYAN H, MATTHAIOU M, WANG R ,et al. Hybrid millimeter-wave systems:a novel paradigm for hetnets[J]. IEEE Communications Magazine, 2015,53(1): 216-221.
PENG M G, LI Y, JIANG J M ,et al. Heterogeneous cloud radio access networks:a new perspective for enhancing spectral and energy efficiencies[J]. IEEE Wireless Communications, 2014,21(6): 126-135.
HUANG Y K, ZHU Y W, QIAO X Q ,et al. Toward holographic video communications:a promising AI-driven solution[J]. IEEE Communications Magazine, 2022,60(11): 82-88.
QUALCOMM TECHNOLOGIES,INC . VR and AR pushing connectivity limits[EB]. 2018.
SUGITO Y, IWASAKI S, CHIDA K ,et al. Video bit-rate requirements for 8K 120-Hz HEVC/H.265 temporal scalable coding:experimental study based on 8K subjective evaluations[J]. APSIPA Transactions on Signal and Information Processing, 2020,9(1).
WANG T M, TAO Y, LIU H . Current researches and future development trend of intelligent robot:a review[J]. International Journal of Automation and Computing, 2018,15(5): 525-546.
WAN S H, GU Z, NI Q ,et al. Cognitive computing and wireless communications on the edge for healthcare service robots[J]. Computer Communications, 2020(149): 99-106.
LIU F, CUI Y H, MASOUROS C ,et al. Integrated sensing and communications:toward dual-functional wireless networks for 6G and beyond[J]. IEEE Journal on Selected Areas in Communications, 2022,40(6): 1728-1767.
SHAO S Y, FAN M, YU C ,et al. Machine learning-assisted sensing techniques for integrated communications and sensing in WLANs:current status and future directions[J]. Progress in Electromagnetics Research, 2022(175): 45-79.
KAYA A Ö, CALIN D, VISWANATHAN H . On the performance of stadium high density carrier Wi-Fi enabled LTE small cell deployments[C]// Proceedings of 2015 IEEE Wireless Communications and Networking Conference (WCNC). Piscataway:IEEE Press, 2015: 855-860.
HE Y, CHEN Y, HU Y ,et al. Wi-Fi vision:sensing,recognition,and detection with commodity MIMO-OFDM Wi-Fi[J]. IEEE Internet of Things Journal, 2020,7(9): 8296-8317.
KUTTY S, SEN D . Beamforming for millimeter wave communications:an inclusive survey[J]. IEEE Communications Surveys & Tutorials, 2016,18(2): 949-973.
WANG H M, ZHANG P Z, LI J ,et al. Radio propagation and wireless coverage of LSAA-based 5G millimeter-wave mobile communication systems[J]. China Communications, 2019,16(5): 1-18.
ZHU J, WANG H M, HONG W . Large-scale fading characteristics of indoor channel at 45-GHz band[J]. IEEE Antennas and Wireless Propagation Letters, 2015(14): 735-738.
WU X Y, WANG C X, SUN J ,et al. 60-GHz millimeter-wave channel measurements and modeling for indoor office environments[J]. IEEE Transactions on Antennas and Propagation, 2017,65(4): 1912-1924.
KYRO M, HANEDA K, SIMOLA J ,et al. Measurement based path loss and delay spread modeling in hospital environments at 60 GHz[J]. IEEE Transactions on Wireless Communications, 2011,10(8): 2423-2427.
SHEN Z M, WANG H M, YU C ,et al. Measurement-based vehicle exterior channel characteristics in 45-GHz band[C]// Proceedings of 2017 Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP). Piscataway:IEEE Press, 2018: 1-3.
MORAITIS N, CONSTANTINOU P . Indoor channel measurements and characterization at 60 GHz for wireless local area network applications[J]. IEEE Transactions on Antennas and Propagation, 2004,52(12): 3180-3189.
MALTSEV A, MASLENNIKOV R, SEVASTYANOV A ,et al. Experimental investigations of 60 GHz WLAN systems in office environment[J]. IEEE Journal on Selected Areas in Communications, 2009,27(8): 1488-1499.
COLLONGE S, ZAHARIA G, ZEIN G E . Influence of the human activity on wide-band characteristics of the 60 GHz indoor radio channel[J]. IEEE Transactions on Wireless Communications, 2004,3(6): 2396-2406.
YI C, ZHANG P Z, WANG H M ,et al. Multipath similarity index measure across multiple frequency bands[J]. IEEE Wireless Communications Letters, 2021,10(8): 1677-1681.
ZHANG P Z, YI C, YANG B S ,et al. Predictive modeling of millimeter-wave vegetation-scattering effect using hybrid physics-based and data-driven approach[J]. IEEE Transactions on Antennas and Propagation, 2022,70(6): 4056-4068.
SALOUS S, FEENEY S M, RAIMUNDO X ,et al. Wideband MIMO channel sounder for radio measurements in the 60 GHz band[J]. IEEE Transactions on Wireless Communications, 2016,15(4): 2825-2832.
WANG C X, BIAN J, SUN J ,et al. A survey of 5G channel measurements and models[J]. IEEE Communications Surveys & Tutorials, 2018,20(4): 3142-3168.
YANG Y, LI Y, ZHANG W X ,et al. Generative-adversarial-networkbased wireless channel modeling:challenges and opportunities[J]. IEEE Communications Magazine, 2019,57(3): 22-27.
ZHOU P, FANG X M, FANG Y G ,et al. Enhanced random access and beam training for millimeter wave wireless local networks with high user density[J]. IEEE Transactions on Wireless Communications, 2017,16(12): 7760-7773.
YU X H, ZHANG J, HAENGGI M ,et al. Coverage analysis for millimeter wave networks:the impact of directional antenna arrays[J]. IEEE Journal on Selected Areas in Communications, 2017,35(7): 1498-1512.
SINGH S, MUDUMBAI R, MADHOW U . Interference analysis for highly directional 60-GHz mesh networks:the case for rethinking medium access control[J]. IEEE/ACM Transactions on Networking, 2011,19(5): 1513-1527.
SUN X Y, QI C H, LI G Y . Beam training and allocation for multiuser millimeter wave massive MIMO systems[J]. IEEE Transactions on Wireless Communications, 2019,18(2): 1041-1053.
RAPPAPORT T S, MURDOCK J N, GUTIERREZ F . State of the art in 60-GHz integrated circuits and systems for wireless communications[J]. Proceedings of the IEEE, 2011,99(8): 1390-1436.
SAKAGUCHI K, MOHAMED E M, KUSANO H ,et al. Millimeter-wave wireless LAN and its extension toward 5G heterogeneous networks[J]. IEICE Transactions on Communications, 2015,E98.B(10): 1932-1948.
WEI L L, HU R Q, QIAN Y ,et al. Key elements to enable millimeter wave communications for 5G wireless systems[J]. IEEE Wireless Communications, 2014,21(6): 136-143.
CHIH-LIN I, HAN S F, BIAN S . Energy-efficient 5G for a greener future[J]. Nature Electronics, 2020,3(4): 182-184.
ZHANG Z Y, HE R S, AI B ,et al. A general channel model for integrated sensing and communication scenarios[J]. IEEE Communications Magazine, 2023,61(5): 68-74.
ARAFIN S, COLDREN L A . Advanced InP photonic integrated circuits for communication and sensing[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018,24(1): 1-12.
NIKNEJAD A M, HASHEMI H . mm-wave silicon technology:60 GHz and beyond[M]. New York: Springer, 2008.
HUANG Y X, YAN Y X, YU W ,et al. Integration design of millimeter-wave bidirectional endfire filtenna array fed by SIW filtering power divider[J]. IEEE Antennas and Wireless Propagation Letters, 2022,21(7): 1457-1461.
MOLISCH A F, RATNAM V V, HAN S Q ,et al. Hybrid beamforming for massive MIMO:a survey[J]. IEEE Communications Magazine, 2017,55(9): 134-141.
DAI F, WU J . Efficient broadcasting in ad hoc wireless networks using directional antennas[J]. IEEE Transactions on Parallel and Distributed Systems, 2006,17(4): 335-347.
SHEN L H, CHEN Y C, FENG K T . Design and analysis of multi-user association and beam training schemes for millimeter wave based WLANs[J]. IEEE Transactions on Vehicular Technology, 2020,69(7): 7458-7472.
BUZZI S, D’ANDREA C, FRESIA M ,et al. Multi-UE multi-AP beam alignment in user-centric cell-free massive MIMO systems operating at mmWave[J]. IEEE Transactions on Wireless Communications, 2022,21(11): 8919-8934.
YOU X H, WANG D M, WANG J Z . Distributed MIMO and cell-free mobile communication[M]. Berlin: Springer, 2021.
LI G L, WANG S, YE K J ,et al. Multi-point integrated sensing and communication:fusion model and functionality selection[J]. IEEE Wireless Communications Letters, 2022,11(12): 2660-2664.
YUAN G X, ZHANG X, WANG W B ,et al. Carrier aggregation for LTE-advanced mobile communication systems[J]. IEEE Communications Magazine, 2010,48(2): 88-93.
KIM T K . Effective beamforming technique for carrier aggregation of millimeter wave[J]. Asia-Pacific Journal of Convergent Research Interchange, 2019,5(1): 21-30.
HASAN Z, BOOSTANIMEHR H, BHARGAVA V K . Green cellular networks:a survey,some research issues and challenges[J]. IEEE Communications Surveys & Tutorials, 2011,13(4): 524-540.
DENG D J, GAN M, GUO Y C ,et al. IEEE 802.11ba:low-power wake-up radio for green IoT[J]. IEEE Communications Magazine, 2019,57(7): 106-112.
DAVASLIOGLU K, AYANOGLU E . Quantifying potential energy efficiency gain in green cellular wireless networks[J]. IEEE Communications Surveys & Tutorials, 2014,16(4): 2065-2091.
YU C, LU Q Y, YIN H ,et al. Linear-decomposition digital predistortion of power amplifiers for 5G ultrabroadband applications[J]. IEEE Transactions on Microwave Theory and Techniques, 2020,68(7): 2833-2844.
GUO C L, LIU F F, CHEN S ,et al. Advances on exploiting polarization in wireless communications:channels,technologies,and applications[J]. IEEE Communications Surveys & Tutorials, 2017,19(1): 125-166.
0
浏览量
596
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构