浏览全部资源
扫码关注微信
[ "廖伟(1999- ),男,云南大学信息学院硕士生,主要研究方向为物联网安全、嵌入式系统开发" ]
[ "何乐生(1977- ),男,博士,云南大学信息学院副教授,主要研究方向为嵌入式系统及物联网应用、微弱信号采集和处理及其在生物电信号和射电天文信号处理等方面的应用" ]
[ "尹恒(1999- ),男,云南大学信息学院硕士生,主要研究方向为嵌入式系统开发、物联网安全" ]
[ "余圣涛(1997- ),男,云南大学信息学院硕士生,主要研究方向为图像加密、物联网安全" ]
[ "权家锐(1999- ),男,云南大学信息学院硕士生,主要研究方向为多模态目标跟踪、神经网络" ]
纸质出版日期:2023-12-20,
网络出版日期:2023-12,
移动端阅览
廖伟, 何乐生, 尹恒, 等. 一种基于Chebyshev混沌映射和CRT的ZigBee网络匿名认证方案[J]. 物联网学报, 2023,7(4):101-109.
WEI LIAO, LESHENG HE, HENG YIN, et al. A ZigBee network anonymous authentication scheme based on Chebyshev chaotic mapping and CRT. [J]. Chinese journal on internet of things, 2023, 7(4): 101-109.
廖伟, 何乐生, 尹恒, 等. 一种基于Chebyshev混沌映射和CRT的ZigBee网络匿名认证方案[J]. 物联网学报, 2023,7(4):101-109. DOI: 10.11959/j.issn.2096-3750.2023.00368.
WEI LIAO, LESHENG HE, HENG YIN, et al. A ZigBee network anonymous authentication scheme based on Chebyshev chaotic mapping and CRT. [J]. Chinese journal on internet of things, 2023, 7(4): 101-109. DOI: 10.11959/j.issn.2096-3750.2023.00368.
针对 ZigBee 网络信任中心不完全可靠、入网时缺乏身份认证等问题,提出了一种基于 Chebyshev 混沌映射和中国剩余定理(CRT
Chinese remainder theorem)的ZigBee网络匿名认证方案。该方案不仅能实现匿名身份的双向认证,还可以保障ZigBee网络结构动态变化时密钥分发的安全;其主要基于一个ZigBee与NB-IoT的无线异构网关,使服务器能够通过该网关对网络中的节点进行有效的管理。从安全性分析以及与其他相关文献对比结果可以看出,所提方案具有更高的安全性,还具有匿名性、不可链接性。此外,实验结果表明所提方案在计算开销上较其他方案有更大的优势。
A ZigBee network anonymous authentication scheme based on Chebyshev chaotic mapping and Chinese remainder theorem (CRT) was proposed to solve the problems such as the incomplete reliability of ZigBee network trust center and the lack of identity authentication when accessing the network.The proposed scheme can not only realize two-way authentication of anonymous identity
but also ensure the security of key distribution when ZigBee network structure changes dynamically.It is mainly based on a ZigBee and NB-IoT wireless heterogeneous gateway
so that the server can effectively manage the nodes in the network through this gateway.From security analysis and comparison with other related literature
the proposed scheme has higher security
with anonymity and unlink ability.In addition
the results show that the proposed scheme has more advantages than other schemes on the computational overhead.
ZigBee网络Chebyshev混沌映射双向身份认证匿名性密钥分发
ZigBee networkChebyshev chaotic mappingtwo-way identity authenticationanonymitykey distribution
ZigBee Alliance. ZigBee security specification overview[EB]. 2010.
GUPTA A, KASBEKAR G S . Secure,anonymity-preserving and lightweight mutual authentication and key agreement protocol for home automation IoT networks[C]// Proceedings of 2022 14th International Conference on Communication Systems & Networks (COMSNETS). Piscataway:IEEE Press, 2022: 375-383.
HOCEINI O, AFIFI H, AOUDJIT R . Authentication based elliptic curves digital signature for ZigBee networks[C]// International Conference on Mobile,Secure,and Programmable Networking. Cham:Springer, 2017: 63-73.
XIONG J, YU B . A novel secure communication scheme for ZigBee mesh network based on physical unclonable function[C]// Proceedings of 2021 IEEE 6th International Conference on Computer and Communication Systems (ICCCS). Piscataway:IEEE Press, 2021: 783-789.
CHUNG H L H . Chaos based RFID authentication protocol[D]. Canada:University of Ottawa, 2013.
LI X, WU F, KHAN M K ,et al. A secure chaotic map-based remote authentication scheme for telecare medicine information systems[J]. Future Generation Computer Systems, 2018(84): 149-159.
杨吉云, 姚锐冬, 周洁 ,等. 基于切比雪夫混沌映射的车联网高效认证方案[J]. 计算机工程, 2021,47(10): 34-42,51.
YANG J Y, YAO R D, ZHOU J ,et al. Efficient authentication scheme based on Chebyshev chaotic map for VANET[J]. Computer Engineering, 2021,47(10): 34-42,51.
YANG J Y, DENG J M, XIANG T ,et al. A Chebyshev polynomial-based conditional privacy-preserving authentication and group-key agreement scheme for VANET[J]. Nonlinear Dynamics, 2021,106(3): 2655-2666.
蒋东华, 朱礼亚, 沈子懿 ,等. 结合二维压缩感知和混沌映射的双图像视觉安全加密算法[J]. 西安交通大学学报, 2022,56(2): 139-148.
JIANG D H, ZHU L Y, SHEN Z Y ,et al. A double image visual security encryption algorithm combining 2D compressive sensing and chaotic mapping[J]. Journal of Xi’an Jiaotong University, 2022,56(2): 139-148.
郭琰, 石飞, 汪烈军 ,等. WSNs中一种基于Chebyshev混沌映射的认证密钥协商协议[J]. 中国科技论文, 2017,12(8): 900-904.
GUO Y, SHI F, WANG L J ,et al. An authentication key agreement protocol based on Chebyshev chaotic map in WSNs[J]. China Sciencepaper, 2017,12(8): 900-904.
ABDELFATAH R I, ABDAL-GHAFOUR N M, NASR M E . Secure VANET authentication protocol (SVAP) using Chebyshev chaotic maps for emergency conditions[J]. IEEE Access, 2021(10): 1096-1115.
LI C T, WU T Y, CHEN C M . A provably secure group key agreement scheme with privacy preservation for online social networks using extended chaotic maps[J]. IEEE Access, 2018(6): 66742-66753.
ZHANG L . Cryptanalysis of the public key encryption based on multiple chaotic systems[J]. Chaos,Solitons & Fractals, 2008,37(3): 669-674.
VAN WAART O, THIJSSEN J . Traditional cryptography[EB]. 2015.
ZHU H F . Using chaotic maps to construct anonymous multi-receiver scheme based on BAN logic[EB]. 2016.
SUN Y, ZHU H F, FENG X S . A novel and concise multi-receiver protocol based on chaotic maps with privacy protection[J]. International Journal of Network Security, 2017(19): 371-382.
ZHU H F, ZHANG Y . An efficient chaotic maps-based deniable authentication group key agreement protocol[J]. Wireless Personal Communications, 2017,96(1): 217-229.
ZHENG X L, HUANG C T, MATTHEWS M . Chinese remainder theorem based group key management[C]// Proceedings of the 45th annual southeast regional conference. New York:ACM Press, 2007: 266-271.
常相茂, 占俊, 王志伟 . 低开销的 NB-IoT 节点群组身份安全认证协议[J]. 通信学报, 2021,42(12): 152-162.
CHANG X M, ZHAN J, WANG Z W . Low-cost group-based identity security authentication protocol for NB-IoT nodes[J]. Journal on Communications, 2021,42(12): 152-162.
DHARMINDER D, GUPTA P . Security analysis and application of Chebyshev chaotic map in the authentication protocols[J]. International Journal of Computers and Applications, 2019: 1-9.
DHARMINDER D, KUNDU N, MISHRA D . Construction of a chaotic map-based authentication protocol for TMIS[J]. Journal of Medical Systems, 2021,45(8): 1-10.
DHARMINDER D, KUMAR U, GUPTA P . A construction of a conformal Chebyshev chaotic map based authentication protocol for healthcare telemedicine services[J]. Complex & Intelligent Systems, 2021,7(5): 2531-2542.
ZHANG L P, ZHU Y, REN W ,et al. An energy-efficient authentication scheme based on Chebyshev chaotic map for smart grid environments[J]. IEEE Internet of Things Journal, 2021,8(23): 17120-17130.
ZHOU J, OU Y H . Key tree and Chinese remainder theorem based group key distribution scheme[C]// International Conference on Algorithms and Architectures for Parallel Processing. Berlin,Heidelberg:Springer, 2009: 254-265.
VIJAYAKUMAR P, BOSE S D, KANNAN A . Chinese remainder theorem based centralised group key management for secure multicast communication[J]. IET Information Security, 2014,8(3): 179-187.
NEUMAN B C, TS'O T . Kerberos:an authentication service for computer networks[J]. IEEE Communications Magazine, 1994,32(9): 33-38.
曹阳 . 基于扩展混沌映射的动态身份认证密钥协商协议[J]. 成都理工大学学报(自然科学版), 2021,48(4): 505-512.
CAO Y . Dynamic identity authentication key agreement protocol based on extended chaos mapping[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2021,48(4): 505-512.
张昱, 孙光民, 翟鹏 ,等. 一种基于切比雪夫混沌映射的可证明安全的溯源认证协议[J]. 信息网络安全, 2022(12): 25-33.
ZHANG Y, SUN G M, ZHAI P ,et al. A provably secure traceability authentication protocol based on Chebyshev chaotic map[J]. Netinfo Security, 2022(12): 25-33.
HOLDEN A V . Chaos[M]. Course Book. Princeton,NJ: Princeton University Press, 2014.
王振宇, 郭阳, 李少青 ,等. 面向轻量级物联网设备的高效匿名身份认证协议设计[J]. 通信学报, 2022,43(7): 49-61.
WANG Z Y, GUO Y, LI S Q ,et al. Design of efficient anonymous identity authentication protocol for lightweight IoT devices[J]. Journal on Communications, 2022,43(7): 49-61.
0
浏览量
120
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构