浏览全部资源
扫码关注微信
1. 湖南科技大学物理与电子科学学院,湖南 湘潭 411201
2. 中国电子设备系统工程公司研究所,北京 100141
[ "李幸(1999- ),女,湖南科技大学物理与电子科学学院硕士生,主要研究方向为复杂网络、节点影响力评估" ]
[ "詹杰(1973- ),男,湖南科技大学物理与电子科学学院教授、博士生导师,主要研究方向为复杂网络评估、近距离无线通信技术、物联网络" ]
[ "任保全(1974- ),男,博士,中国电子设备系统工程公司研究所高级工程师,主要研究方向为复杂环境下物联网技术及应用" ]
[ "朱思奇(1997- ),男,湖南科技大学物理与电子科学学院硕士生,主要研究方向为复杂网络、复杂系统控制理论" ]
纸质出版日期:2024-03-30,
网络出版日期:2024-03,
移动端阅览
李幸, 詹杰, 任保全, 等. 基于邻域信息的复杂网络节点重要性评估方法设计[J]. 物联网学报, 2024,8(1):49-59.
XING LI, JIE ZHAN, BAOQUAN REN, et al. Design of nodes importance assessment method for complex network based on neighborhood information. [J]. Chinese journal on internet of things, 2024, 8(1): 49-59.
李幸, 詹杰, 任保全, 等. 基于邻域信息的复杂网络节点重要性评估方法设计[J]. 物联网学报, 2024,8(1):49-59. DOI: 10.11959/j.issn.2096-3750.2024.00335.
XING LI, JIE ZHAN, BAOQUAN REN, et al. Design of nodes importance assessment method for complex network based on neighborhood information. [J]. Chinese journal on internet of things, 2024, 8(1): 49-59. DOI: 10.11959/j.issn.2096-3750.2024.00335.
在复杂网络中准确识别影响力节点,对网络管理和网络安全至关重要。局部中心性方法简明易用,但忽略了邻居节点间的拓扑关系,不能提供全局最优结果。提出了一种关联节点连边关系和拓扑结构的重要节点评估方法,该方法首先综合应用H指数和信息熵对节点进行评估,在此基础上代入节点的结构洞特征,即在关注节点自身质量和邻居节点信息量的同时,考虑了其“桥接”属性。采用疾病传播模型对算法进行验证,应用肯德尔(Kendall)相关系数、互补累积分布函数以及传播影响力来验证算法的有效性与适用性。在6个真实网络数据集上的仿真结果表明,在识别和排序网络中的关键节点上,所提方法比传统中心性方法更准确。
Accurate identification of influential nodes in complex networks is crucial for network management and network security.The local centrality method is concise and easy to use
but ignores the topological relationship between neighboring nodes and cannot provide globally optimal results.A node importance assessment method was proposed to correlate the node edge relationship and topology
which firstly applied the H-index and information entropy to assess the nodes
then combined the structural holes of the nodes with the structural characteristics of the nodes
and took into account the attribute of “bridging” while focusing on the node’s own quality and the amount of information about the neighboring nodes.The algorithm was validated by simulating the propagation process using the SIR model
and the Kendall correlation coefficient
complementary cumulative distribution function and propagation influence were applied to validate the validity and applicability of the method.Comparison of the experimental results on six real network datasets shows that the proposed method is more accurate than the traditional centrality methods in identifying and ordering the key nodes in the network.
复杂网络节点重要性SIR模型信息熵H指数结构洞
complex networknode importanceSIR modelinformation entropyH-indexstructural hole
GAO J, ZHANG Y C, ZHOU T . Computational socioeconomics[J]. Physics Reports, 2019,817: 1-104.
LIU Y Y, SLOTINE J J, BARABÁSI A L . Controllability of complex networks[J]. Nature, 2011,473: 167-173.
VERMEULEN R, SCHYMANSKI E L, BARABÁSI A L, ,et al. The exposome and health:where chemistry meets biology[J]. Science, 2020,367(6476): 392-396.
JUNG H, PHOA F K H . A mixture model of truncated zeta distributions with applications to scientific collaboration networks[J]. Entropy, 2021,23(5): 502.
BARABÁSI A L, GULBAHCE N, LOSCALZO J . Network medicine:a network-based approach to human disease[J]. Nature Reviews Genetics, 2011,12(1): 56-68.
BORGE-HOLTHOEFER J, MORENO Y . Absence of influential spreaders in rumor dynamics[J]. Physical Review E,Statistical,Nonlinear,and Soft Matter Physics, 2012,85(2): 026116.
BONACICH P . Factoring and weighting approaches to status scores and clique identification[J]. The Journal of Mathematical Sociology, 1972,2(1): 113-120.
FREEMAN L C . A set of measures of centrality based on betweenness[J]. Sociometry, 1977,40(1): 35.
SABIDUSSI G . The centrality of a graph[J]. Psychometrika, 1966,31(4): 581-603.
KITSAK M, GALLOS L K, HAVLIN S ,et al. Identification of influential spreaders in complex networks[J]. Nature Physics, 2010,6: 888-893.
LU L Y, ZHOU T, ZHANG Q M ,et al. The H-index of a network node and its relation to degree and coreness[J]. Nature Communications, 2016,7:10168.
CHEN D B, LÜ L Y, SHANG M S ,et al. Identifying influential nodes in complex networks[J]. Physica A:Statistical Mechanics and Its Applications, 2012,391(4): 1777-1787.
REN Z M, SHAO F, LIU J G ,et al. Node importance measurement based on the degree and clustering coefficient information[J]. Acta Physica Sinica, 2013,62(12): 128901.
LIU Y, WEI B, DU Y X ,et al. Identifying influential spreaders by weight degree centrality in complex networks[J]. Chaos,Solitons &Fractals, 2016,86: 1-7.
BAE J, KIM S . Identifying and ranking influential spreaders in complex networks by neighborhood coreness[J]. Physica A:Statistical Mechanics and Its Applications, 2014,395: 549-559.
XU G Q, MENG L, TU D Q ,et al. LCH:a local clustering Hindex centrality measure for identifying and ranking influential nodes in complex networks[J]. Chinese Physics B, 2021,30(8): 088901.
NIE T Y, GUO Z, ZHAO K ,et al. Using mapping entropy to identify node centrality in complex networks[J]. Physica A:Statistical Mechanics and Its Applications, 2016,453: 290-297.
QIAO T, SHAN W, ZHOU C . How to identify the most powerful node in complex networks? A novel entropy centrality approach[J]. Entropy, 2017,19(11): 614.
ZAREIE A, SHEIKHAHMADI A, JALILI M . Influential node ranking in social networks based on neighborhood diversity[J]. Future Generation Computer Systems, 2019,94: 120-129.
卢鹏丽, 郭旭东, 董璊 ,等. 基于介度熵的复杂网络节点重要度识别方法[J]. 兰州理工大学学报, 2020,46(2): 111-115.
LU P L, GUO X D, DONG M ,et al. Importance identification method of complex network nodes based on betweenness and degree entropy[J]. Journal of Lanzhou University of Technology, 2020,46(2): 111-115.
EZEH C, REN T, XU Y J ,et al. Entropy and structural-hole based node ranking methods[J]. J Internet Technol, 2021,22(5): 1009-1017.
DEHMER M . Information processing in complex networks:graph entropy and information functionals[J]. Applied Mathematics and Computation, 2008,201(1/2): 82-94.
HIRSCH J E . An index to quantify an individual’s scientific research output[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005,102(46): 16569-16572.
SALANCIK G R, BURT R S . WANTED:a good network theory of organization[J]. Administrative Science Quarterly, 1995,40(2): 345.
BURT R S, KILDUFF M, TASSELLI S . Social network analysis:foundations and frontiers on advantage[J]. Annual Review of Psychology, 2013,64: 527-547.
SU X P, SONG Y R . Leveraging neighborhood “structural holes”to identifying key spreaders in social networks[J]. Acta Physica Sinica, 2015,64(2): 020101.
SHANNON C E . A mathematical theory of communication[J]. The Bell System Technical Journal, 1948,27(3): 379-423.
WANG M, LI W C, GUO Y N ,et al. Identifying influential spreaders in complex networks based on improved k-shell method[J]. Physica A:Statistical Mechanics and Its Applications, 2020,554:124229.
NEWMAN M E J . Finding community structure in networks using the eigenvectors of matrices[J]. Physical Review E,Statistical,Nonlinear,and Soft Matter Physics, 2006,74(3 Pt 2): 036104.
COLIZZA V, PASTOR-SATORRAS R, VESPIGNANI A . Reaction-diffusion processes and metapopulation models in heterogeneous networks[J]. Nature Physics, 2007,3: 276-282.
DUCH J, ARENAS A . Community detection in complex networks using extremal optimization[J]. Physical Review E,Statistical,Nonlinear,and Soft Matter Physics, 2005,72(2 Pt 2): 027104.
YIN H, BENSON A R, LESKOVEC J ,et al. Local higher-order graph clustering[J]. KDD:Proceedings International Conference on Knowledge Discovery & Data Mining, 2017,2017: 555-564.
ADAMIC L A, GLANCE N . The political blogosphere and the 2004 U.S.election:divided they blog[C]// Proceedings of the 3rd international workshop on Link discovery. New York:ACM, 2005: 36-43.
LESKOVEC J, HUTTENLOCHER D, KLEINBERG J . Predicting positive and negative links in online social networks[C]// Proceedings of the 19th International Conference on World Wide Web. New York:ACM, 2010: 641-650.
SHARKEY K J . Deterministic epidemic models on contact networks:correlations and unbiological terms[J]. Theoretical Population Biology, 2011,79(4): 115-129.
KENDALL M G . A new measure of rank correlation[J]. Biometrika, 1938,30(1/2): 81-93.
HELTON J C . Probability,conditional probability and complementary cumulative distribution functions in performance assessment for radioactive waste disposal[J]. Reliability Engineering & System Safety, 1996,54(2/3): 145-163.
CASTELLANO C, PASTOR-SATORRAS R . Thresholds for epidemic spreading in networks[J]. Physical Review Letters, 2010,105(21): 218701.
0
浏览量
47
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构