浏览全部资源
扫码关注微信
[ "温陈驰(1999‒ ),男,南京邮电大学物联网学院硕士生,主要研究方向为可重构智能表面和认知无线电" ]
[ "左加阔(1985‒ ),男,博士,南京邮电大学物联网学院讲师,主要研究方向为非正交多址接入、通信感知一体化等" ]
[ "鲍楠(1981‒ ),女,博士,南京邮电大学物联网学院讲师,主要研究方向为无线资源管理、无线通信网络等" ]
[ "赵鹏飞(1999‒ ),男,南京邮电大学物联网学院硕士生,主要研究方向为可重构智能表面和无线携能通信" ]
纸质出版日期:2024-03-30,
网络出版日期:2024-03,
移动端阅览
温陈驰, 左加阔, 鲍楠, 等. 基于STARS的安全认知无线电联合波束成形优化算法[J]. 物联网学报, 2024,8(1):136-146.
CHENCHI WEN, JIAKUO ZUO, NAN BAO, et al. Joint beamforming optimization algorithm for secure cognitive radio based on STARS. [J]. Chinese journal on internet of things, 2024, 8(1): 136-146.
温陈驰, 左加阔, 鲍楠, 等. 基于STARS的安全认知无线电联合波束成形优化算法[J]. 物联网学报, 2024,8(1):136-146. DOI: 10.11959/j.issn.2096-3750.2024.00347.
CHENCHI WEN, JIAKUO ZUO, NAN BAO, et al. Joint beamforming optimization algorithm for secure cognitive radio based on STARS. [J]. Chinese journal on internet of things, 2024, 8(1): 136-146. DOI: 10.11959/j.issn.2096-3750.2024.00347.
基于可重构智能表面(RIS
reconfigurable intelligent surface)的安全认知无线电(SCR
secure cognitive radio)系统均假设次用户(SU
secondary user)和主用户(PU
primary user)在基站(BS
base station)的同一侧,仅能够实现通信区域的部分覆盖,限制了RIS部署的灵活性和有效性。为了解决上述问题,提出了一种新的基于同时透射和反射表面(STARS
simultaneously transmitting and reflecting surface)的SCR系统。在该系统中, STARS能够实现通信区域的全覆盖,利用透射波束成形向量提高SU的接收信号强度,同时利用反射波束成形向量降低SU对PU的干扰,为SCR系统的设计提供了新的优化自由度(DoF
degree of freedom)。考虑SU保密率约束、PU干扰功率约束(IPC
interference power constraint)和STARS透射/反射参数约束,从降低系统总功耗角度出发,以最小化BS发射功率为目标,构建BS主动波束成形向量和STARS透射/反射波束成形向量联合优化问题。这一最小化问题是变量耦合非凸问题,很难直接求解,提出了基于凸差松弛(DCR
difference-of-convex relaxation)方法和顺序秩一约束松弛(SROCR
sequential rank-one constraint relaxation)方法的交替优化(AO
alternating optimization)算法,联合设计BS主动波束成形向量和STARS透射/反射波束成形向量。仿真结果表明,所提算法具有良好的收敛性能,能够有效降低SU对PU的干扰,且与传统RIS、随机相位、最大比传输(MRT
maximum-ratio transmission)和等能量分裂(Equal ES
equal energy splitting)方案相比,BS发射功率分别降低了8.3%、15.4%、5.9%和5.3%。
Secure cognitive radio (SCR) system based on reconfigurable intelligent surface (RIS) assumes that secondary user (SU) and primary user (PU) locate on the same side of the base station (BS)
which can only cover part of the communication area and limits the deployment flexibility and effectiveness of the RIS.In order to solve the above problem
a new SCR system based on simultaneously transmitting and reflecting surface (STARS) was proposed.In the system
STARS could achieve full coverage of communication area
improve the received signal strength of the SU with the transmission beamforming vector and reduce the interference of the SU to the PU with the reflection beamforming vector
which provided new optimization degree of freedom (DoF) for the design of the SCR system.Considering secrecy rate constraint of the SU
interference power constraint (IPC) of the PU and transmission/reflection parameters constraint of the STARS
BS active beamforming vector and STARS transmission/reflection beamforming vectors were jointly optimized to minimize the BS’s transmit power from the perspective of reducing the total power consumption of the system.The minimization problem is a variable coupling non-convex problem
which is difficult to tackle directly.An alternating optimization (AO) algorithm based on difference-of-convex relaxation (DCR) method and sequential rank-one constraint relaxation (SROCR) method was proposed to jointly design the BS active beamforming vector and STARS transmission/reflection beamforming vectors.Simulation results show that the proposed algorithm has good convergence performance and effectively reduces the interference of SU on PU.Compared with the traditional RIS
random phase
maximum-ratio transmission (MRT) and equal energy splitting (Equal ES) schemes
the BS transmitting power is reduced by 8.3%
15.4%
5.9% and 5.3%
respectively.
可重构智能表面认知无线电波束成形同时透射和反射
reconfigurable intelligent surfacecognitive radiobeamformingsimultaneous transmission and reflection
ZHANG W S, WANG C X, GE X H ,et al. Enhanced 5G cognitive radio networks based on spectrum sharing and spectrum aggregation[J]. IEEE Transactions on Communications, 2018,66(12): 6304-6316.
QIN Z J, ZHOU X W, ZHANG L ,et al. 20 years of evolution from cognitive to intelligent communications[J]. IEEE Transactions on Cognitive Communications and Networking, 2020,6(1): 6-20.
LIANG Y C, ZHANG Q Q, LARSSON E G ,et al. Symbiotic radio:cognitive backscattering communications for future wireless networks[J]. IEEE Transactions on Cognitive Communications and Networking, 2020,6(4): 1242-1255.
PEI Y Y, LIANG Y C, ZHANG L ,et al. Secure communication over MISO cognitive radio channels[J]. IEEE Transactions on Wireless Communications, 2010,9(4): 1494-1502.
ZUO J K, LIU Y W, BASAR E ,et al. Intelligent reflecting surface enhanced millimeter-wave NOMA systems[J]. IEEE Communications Letters, 2020,24(11): 2632-2636.
过仕安, 王鸿 . 基于MM算法的智能反射面辅助NOMA系统协作传输方案设计[J]. 南京邮电大学学报(自然科学版), 2021,41(6): 23-28.
GUO S A, WANG H . MM-based transmission design for IRSaided CoMP-NOMA systems[J]. Journal of Nanjing University of Posts and Telecommunications (Natural Science), 2021,41(6): 23-28.
LIU Y W, LIU X, MU X D ,et al. Reconfigurable intelligent surfaces:principles and opportunities[J]. IEEE Communications Surveys & Tutorials, 2021,23(3): 1546-1577.
MU X D, LIU Y W, GUO L ,et al. Capacity and optimal resource allocation for IRS-assisted multi-user communication systems[J]. IEEE Transactions on Communications, 2021,69(6): 3771-3786.
DONG L M, WANG H M, XIAO H T ,et al. Secure intelligent reflecting surface assisted MIMO cognitive radio transmission[C]// Proceedings of 2021 IEEE Wireless Communications and Networking Conference (WCNC). Piscataway:IEEE Press, 2021: 1-6.
WU X W, MA J X, XING Z ,et al. Secure and energy efficient transmission for IRS-assisted cognitive radio networks[J]. IEEE Transactions on Cognitive Communications and Networking, 2022,8(1): 170-185.
DONG L M, WANG H M, XIAO H T . Secure cognitive radio communication via intelligent reflecting surface[J]. IEEE Transactions on Communications, 2021,69(7): 4678-4690.
WU X W, MA J X, XUE X P ,et al. Outage constrained secure beamforming for IRS-assisted cognitive radio networks[C]// Proceedings of 2022 IEEE 33rd Annual International Symposium on Personal,Indoor and Mobile Radio Communications (PIMRC). Piscataway:IEEE Press, 2022: 1128-1133.
XU J Q, LIU Y W, MU X D ,et al. STAR-RISs:simultaneous transmitting and reflecting reconfigurable intelligent surfaces[J]. IEEE Communications Letters, 2021,25(9): 3134-3138.
MU X D, LIU Y W, GUO L ,et al. Simultaneously transmitting and reflecting (STAR) RIS aided wireless communications[J]. IEEE Transactions on Wireless Communications, 2022,21(5): 3083-3098.
LIU Y W, MU X D, XU J Q ,et al. STAR:simultaneous transmission and reflection for 360° coverage by intelligent surfaces[J]. IEEE Wireless Communications, 2021,28(6): 102-109.
YUE X W, XIE J, LIU Y W ,et al. Simultaneously transmitting and reflecting reconfigurable intelligent surface assisted NOMA networks[J]. IEEE Transactions on Wireless Communications, 2023,22(1): 189-204.
ZHANG Z, CHEN J, LIU Y W ,et al. On the secrecy design of STAR-RIS assisted uplink NOMA networks[J]. IEEE Transactions on Wireless Communications, 2022,21(12): 11207-11221.
NIU H H, CHU Z, ZHOU F H ,et al. Simultaneous transmission and reflection reconfigurable intelligent surface assisted secrecy MISO networks[J]. IEEE Communications Letters, 2021,25(11): 3498-3502.
WANG W, NI W L, TIAN H ,et al. Robust design for STAR-RIS secured Internet of medical things[C]// Proceedings of 2022 IEEE International Conference on Communications Workshops (ICC Workshops). Piscataway:IEEE Press, 2022: 574-579.
PERERA P P, WARNASOORIYA V G, KUDATHANTHIRIGE D ,et al. Sum rate maximization in STAR-RIS assisted full-duplex communication systems[C]// Proceedings of ICC 2022 - IEEE International Conference on Communications. Piscataway:IEEE Press, 2022: 3281-3286.
YUAN J, LIANG Y C, JOUNG J ,et al. Intelligent reflecting surface-assisted cognitive radio system[J]. IEEE Transactions on Communications, 2021,69(1): 675-687.
XU D F, YU X H, SCHOBER R . Resource allocation for intelligent reflecting surface-assisted cognitive radio networks[C]// Proceedings of 2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). Piscataway:IEEE Press, 2020: 1-5.
JIANG W H, ZHANG Y, ZHAO J ,et al. Joint transmit precoding and reflect beamforming design for IRS-assisted MIMO cognitive radio systems[J]. IEEE Transactions on Wireless Communications, 2022,21(6): 3617-3631.
JIANG T, SHI Y M . Over-the-air computation via intelligent reflecting surfaces[C]// Proceedings of 2019 IEEE Global Communications Conference (GLOBECOM). Piscataway:IEEE Press, 2020: 1-6.
YANG K, JIANG T, SHI Y M ,et al. Federated learning via overthe-air computation[J]. IEEE Transactions on Wireless Communications, 2020,19(3): 2022-2035.
HE J L, YU K Q, ZHOU Y ,et al. Reconfigurable intelligent surface enhanced cognitive radio networks[C]// Proceedings of 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall). Piscataway:IEEE Press, 2021: 1-5.
GRANT M, BOYD S, YE Y Y . Disciplined convex programming[M]. Global Optimization. Boston: Kluwer Academic Publishers, 2006: 155-210.
ZUO J K, LIU Y W, DING Z G ,et al. Joint design for simultaneously transmitting and reflecting (STAR) RIS assisted NOMA systems[J]. IEEE Transactions on Wireless Communications, 2023,22(1): 611-626.
CAO P, THOMPSON J, POOR H V . A sequential constraint relaxation algorithm for rank-one constrained problems[C]// Proceedings of 2017 25th European Signal Processing Conference (EUSIPCO). Piscataway:IEEE Press, 2017: 1060-1064.
WU Q Q, ZHANG R . Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming[J]. IEEE Transactions on Wireless Communications, 2019,18(11): 5394-5409.
0
浏览量
39
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构