浏览全部资源
扫码关注微信
1. 中南大学电子信息学院,湖南 长沙 410004
2. 中南大学计算机学院,湖南 长沙 410083
[ "陈雪晨(1984‒ ),女,中南大学电子信息学院副教授,主要研究方向为无线通信理论及系统、室内智能定位" ]
[ "易嘉旋(1999‒ ),男,中南大学电子信息学院硕士生,主要研究方向为室内智能定位、无线通信、人工智能" ]
[ "王霭祥(2000‒ ),男,中南大学计算机学院硕士生,主要研究方向为联邦学习、无线通信、室内定位" ]
[ "邓晓衡(1974‒ ),男,中南大学电子信息学院教授、院长,主要研究方向为无线网络与边缘计算、物联网与大数据、智能车联网、分布式计算与系统" ]
纸质出版日期:2024-03-30,
网络出版日期:2024-03,
移动端阅览
陈雪晨, 易嘉旋, 王霭祥, 等. 基于连续动作空间深度强化学习的多数据融合室内定位方法[J]. 物联网学报, 2024,8(1):40-48.
XUECHEN CHEN, JIAXUAN YI, AIXIANG WANG, et al. Multi-data fusionaided indoor localization based on continuous action space deep reinforcement learning. [J]. Chinese journal on internet of things, 2024, 8(1): 40-48.
陈雪晨, 易嘉旋, 王霭祥, 等. 基于连续动作空间深度强化学习的多数据融合室内定位方法[J]. 物联网学报, 2024,8(1):40-48. DOI: 10.11959/j.issn.2096-3750.2024.00358.
XUECHEN CHEN, JIAXUAN YI, AIXIANG WANG, et al. Multi-data fusionaided indoor localization based on continuous action space deep reinforcement learning. [J]. Chinese journal on internet of things, 2024, 8(1): 40-48. DOI: 10.11959/j.issn.2096-3750.2024.00358.
基于智能手机的室内定位在研究和工业领域都引起了相当大的关注。然而在复杂的定位环境中,定位的准确性和鲁棒性仍然是具有挑战性的问题。考虑到行人航位推算(PDR
pedestrian dead reckoning)算法被广泛配备在最近的智能手机上,提出了一种基于双延迟深度确定性策略梯度(TD3
twin delayed deep deterministic policy gradient)的室内定位融合方法,该方法集成了Wi-Fi信息和PDR数据,将PDR的定位过程建模为马尔可夫过程并引入了智能体的连续动作空间。最后,与3个最先进的深度Q网络(DQN
deep Q network)室内定位方法进行实验。实验结果表明,该方法能够显著减少定位误差,提高定位准确性。
Significant attention has been paid to indoor localization using smartphones in both research and industry.However
the accuracy and robustness of localization remain challenging issues
particularly in complex indoor environments.In light of the prevalent incorporation of pedestrian dead reckoning (PDR) devices in contemporary smartphones
an advanced indoor localization fusion method
anchored in the twin delayed deep deterministic policy gradient (TD3) framework
was proposed.In this approach
a seamless integration of Wi-Fi information and PDR data was achieved.The localization process of PDR was modeled as a Markov process
and a comprehensive continuous action space was introduced for the agent.To evaluate the performance of the proposed method
experiments were conducted and this approach was compared with three state-of-the-art deep Q network (DQN) based indoor localization methods.The experimental results demonstrate that the proposed method significantly reduces localization errors and enhances overall localization accuracy.
Wi-Fi行人航位推算室内定位双延迟深度确定性策略梯度深度强化学习
Wi-Fipedestrian dead reckoningindoor localizationtwin delayed deep deterministic policy gradientdeep reinforcement learning
LIU M, WANG H J, YANG Y ,et al. RFID 3-D indoor localization for tag and tag-free target based on interference[J]. IEEE Transactions on Instrumentation and Measurement, 2019,68(10): 3718-3732.
WU R J, PIKE M, CHAI X Q,etal . GA-PDR:using gait analysis for heading estimation in PDR based indoor localization system[C]// Proceedings of the IECON 2023- 49th Annual Conference of the IEEE Industrial Electronics Society. Piscataway:IEEE Press, 2023: 1-6.
GHAOUI M A, VINCKE B, REYNAUD R . Human motion likelihood representation map-aided PDR particle filter[J]. IEEE Sensors Journal, 2023,23(1): 484-494.
SUN W, XUE M, YU H S ,et al. Augmentation of fingerprints for indoor WiFi localization based on Gaussian process regression[J]. IEEE Transactions on Vehicular Technology, 2018,67(11): 10896-10905.
LI Z, RAO X P . Toward long-term effective and robust device-free indoor localization via channel state information[J]. IEEE Internet of Things Journal, 2022,9(5): 3599-3611.
GAO B, YANG F, CUI N ,et al. A federated learning framework for fingerprinting-based indoor localization in multibuilding and multi-floor environments[J]. IEEE Internet of Things Journal, 2023,10(3): 2615-2629.
KIM M, HAN D, RHEE J K K . Multiview variational deep learning with application to practical indoor localization[J]. IEEE Internet of Things Journal, 2021,8(15): 12375-12383.
ZOU H, CHEN C L, LI M X ,et al. Adversarial learning-enabled automatic WiFi indoor radio map construction and adaptation with mobile robot[J]. IEEE Internet of Things Journal, 2020,7(8): 6946-6954.
YU D, LI C G . An accurate WiFiindoor positioning algorithm for complex pedestrian environments[J]. IEEE Sensors Journal, 2021,21(21): 24440-24452.
LIU S Y, DE LACERDA R, FIORINA J . WKNN indoor Wi-Fi localization method using k-means clustering based radio mapping[C]// Proceedings of the 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring). Piscataway:IEEE Press, 2021: 1-5.
ZHANG M Y, JIA J, CHEN J ,et al. Indoor localization fusing WiFi with smartphone inertial sensors using LSTM networks[J]. IEEE Internet of Things Journal, 2021,8(17): 13608-13623.
LIANG Q, LIU M . An automatic site survey approach for indoor localization using a smartphone[J]. IEEE Transactions on Automation Science and Engineering, 2020,17(1): 191-206.
LIU R, MARAKKALAGE S H, PADMAL M ,et al. Collaborative SLAM based on WiFi fingerprint similarity and motion information[J]. IEEE Internet of Things Journal, 2020,7(3): 1826-1840.
ZHAO Y H, ZHANGZ X, FENG T Y ,et al. GraphIPS:calibrationfree and map-free indoor positioning using smartphone crowdsourced data[J]. IEEE Internet of Things Journal, 2021,8(1): 393-406.
DU X Q, LIAO X W, LIU M M ,et al. CRCLoc:a crowdsourcingbased radio map construction method for WiFi fingerprinting localization[J]. IEEE Internet of Things Journal, 2022,9(14): 12364-12377.
ZHOU Y, MA X Y, HU S T ,et al. QoE-driven adaptive deployment strategy of multi-UAV networks based on hybrid deep reinforcement learning[J]. IEEE Internet of Things Journal, 2022,9(8): 5868-5881.
ZHAO Y J, MA Y, HU S L . USV formation and path-following control via deep reinforcement learning with random braking[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021,32(12): 5468-5478.
OUBBATI O S, ATIQUZZAMAN M, BAZ A ,et al. Dispatch of UAVs for urban vehicular networks:adeep reinforcement learning approach[J]. IEEE Transactions on Vehicular Technology, 2021,70(12): 13174-13189.
CHU N H, HOANGD T, NGUYEN D N ,et al. Joint speed control and energy replenishment optimization for UAV-assisted IoT data collection with deep reinforcement transfer learning[J]. IEEE Internet of Things Journal, 2023,10(7): 5778-5793.
LIU Z, LIU Q M, TANG L ,et al. Visuomotor reinforcement learning for multirobot cooperative navigation[J]. IEEE Transactions on Automation Science and Engineering, 2022,19(4): 3234-3245.
ZHU W, GUO X, OWAKI D ,et al. A survey of sim-to-real transfer techniques applied to reinforcement learning for bioinspired robots[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023,34(7): 3444-3459.
CHEN L, WANG Y N, MIAO Z Q ,et al. Transformer-based imitative reinforcement learning for multirobot path planning[J]. IEEE Transactions on Industrial Informatics, 2023,19(10): 10233-10243.
HAN J I, LEE J H, CHOI H S ,et al. Policy design for an ankle-foot orthosis using simulated physical human-robot interaction via deep reinforcement learning[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering:a Publication of the IEEE Engineering in Medicine and Biology Society, 2022,30: 2186-2197.
BENADDI H, IBRAHIMI K, BENSLIMANE A ,et al. Robust enhancement of intrusion detection systems using deep reinforcement learning and stochastic game[J]. IEEE Transactions on Vehicular Technology, 2022,71(10): 11089-11102.
OH I, RHO S, MOON S ,et al. Creating pro-level AI for a realtime fighting game using deep reinforcement learning[J]. IEEE Transactions on Games, 2022,14(2): 212-220.
XU P, YIN Q Y, ZHANG J G ,et al. Deep reinforcement learning with part-aware exploration bonus in video games[J]. IEEE Transactions on Games, 2022,14(4): 644-653.
DOU F, LU J, XU T Y ,et al. A bisection reinforcement learning approach to 3-D indoor localization[J]. IEEE Internet of Things Journal, 2021,8(8): 6519-6535.
MOHAMMADI M, AL-FUQAHA A, GUIZANI M ,et al. Semisupervised deep reinforcement learning in support of IoT and smart city services[J]. IEEE Internet of Things Journal, 2018,5(2): 624-635.
LI Q, LIAO X W, GAO Z Z . An enhanced direction calibration based on reinforcement learning for indoor localization system[C]// Proceedings of the 2020 IEEE Wireless Communications and Networking Conference (WCNC). Piscataway:IEEE Press, 2020: 1-6.
MNIH V, KAVUKCUOGLU K, SILVER D ,et al. Human-level control through deep reinforcement learning[J]. Nature, 2015,518: 529-533.
SILVER D, HUANG A, MADDISON C J ,et al. Mastering the game of Go with deep neural networks and tree search[J]. Nature, 2016,529: 484-489.
FUJIMOTO S, VAN HOOF H, MEGER D . Addressing function approximation error in actor-critic methods[EB/OL]. 2018:arXiv:1802.09477. http://arxiv.org/abs/1802.09477.pdfhttp://arxiv.org/abs/1802.09477.pdf.
QIAN Y X, CHEN X C . An improved particle filter based indoor tracking system via joint Wi-Fi/PDR localization[J]. Measurement Science and Technology, 2021,32(1): 014004.
LI Y, HU X, ZHUANG Y ,et al. Deep reinforcement learning (DRL):another perspective for unsupervised wireless localization[J]. IEEE Internet of Things Journal, 2020,7(7): 6279-6287.
LEI P, LI Y, YUAN L ,et al. An improved wifi fingerprint location method for indoor positioning[C]// Proceedings of the 2022 China Automation Congress (CAC). Piscataway:IEEE, 2022: 423-427.
LIU S, LACERDA R D, FIORINA J . Performance analysis of adaptive k for weighted k-earest neighbor based indoor positioning[C]// Proceedings of the 2022 IEEE 95th Vehicular Technology Conference:(VTC2022-Spring). Piscataway:IEEE, 2022: 1-5.
0
浏览量
71
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构