浏览全部资源
扫码关注微信
1.南京邮电大学物联网学院,江苏 南京 210003
2.南京大学计算机软件新技术全国重点实验室,江苏 南京 210023
3.金陵科技学院软件工程学院,江苏 南京211169
4.南京邮电大学通达学院计算机工程学院,江苏 扬州 225127
[ "张兆维(1987‒ ),男,博士,南京邮电大学讲师,主要研究方向为无线通信、信号处理、机器学习等。" ]
[ "刘琳(1999‒ ),女,南京邮电大学硕士生,主要研究方向为无线通信、信号处理等。" ]
[ "刘慧(1986‒ ),女,博士,金陵科技学院讲师,主要研究方向为数据库、算法设计、机器学习等。" ]
[ "吴同(2002‒ ),女,南京邮电大学在读,主要研究方向为无线通信、博弈论、机器学习等。" ]
[ "朱明蕾(2002‒ ),女,南京邮电大学通达学院在读,主要研究方向为无线通信、时频分析等。" ]
[ "潘甦(1972‒ ),男,博士,南京邮电大学教授,主要研究方向为无线通信、物联网、人工智能等。" ]
纸质出版日期:2024-06-10,
收稿日期:2023-06-25,
修回日期:2024-06-15,
移动端阅览
张兆维,刘琳,刘慧等.空间通信载波多普勒频偏捕获的两阶段稀疏算法[J].物联网学报,2024,08(02):36-45.
ZHANG Zhaowei,LIU Lin,LIU Hui,et al.Two-stage-sparse algorithm for carrier Doppler-shift acquisition in space communications[J].Chinese Journal on Internet of Things,2024,08(02):36-45.
张兆维,刘琳,刘慧等.空间通信载波多普勒频偏捕获的两阶段稀疏算法[J].物联网学报,2024,08(02):36-45. DOI: 10.11959/j.issn.2096-3750.2024.00371.
ZHANG Zhaowei,LIU Lin,LIU Hui,et al.Two-stage-sparse algorithm for carrier Doppler-shift acquisition in space communications[J].Chinese Journal on Internet of Things,2024,08(02):36-45. DOI: 10.11959/j.issn.2096-3750.2024.00371.
在空间通信中,信号面临远距离传输和高动态相对运动,其中,远距离传输带来很低信噪比(SNR
signal-to-noise ratio),而高动态相对运动则引起载波高动态多普勒频偏。为解决低信噪比问题,传统捕获方法需要长时间累积很多接收信号。但是,在长时间累积过程中,高动态多普勒频偏会导致严重的能量扩散问题。针对上述问题,提出了一种两阶段稀疏(TSS
two-stage-sparse)算法来捕获载波多普勒频偏。该算法首先利用粗捕获结果构造粗稀疏搜索范围,然后选择若干个较大元素来构建精稀疏搜索范围,最后搜索最大元素作为捕获结果。由于稀疏范围仅覆盖很窄的频率区间,该算法能够滤除更多的噪声干扰,从而辅助信号元素成为最大元素。理论分析和仿真结果也表明,所提TSS算法能够显著提高多普勒频偏的捕获概率。
In space communications
the signal faces long-distance transmission and a high-dynamic relative movement. The long-distance transmission results in a very low signal-to-noise ratio (SNR) and the high-dynamic relative movement causes a high-dynamic Doppler-shift on the carrier. To address the low SNR
the traditional acquisition method requires the long-time accumulation of many received signals. However
during the long-time accumulation
the high-dynamic Doppler-shift causes the serious energy dispersion problem. To solve the problem
a two-stage-sparse (TSS) algorithm was proposed to acquire the Doppler-shift. The proposed TSS algorithm firstly used the coarse acquisitions to construct a coarse sparse-search-range
then selected some large elements to construct a fine sparse-search-range
and finally searched the largest element as the acquisition result. Because the sparse-search-range only covers a narrow frequency range
the TSS algorithm excludes more noise elements
thus allowing the signal element to become the largest element. The theoretical analysis and simulation results show that the proposed TSS algorithm significantly increases the acquisition probability.
空间通信低信噪比高动态多普勒频偏捕获能量扩散
space communicationlow SNRhigh-dynamic Doppler-shiftacquisitionenergy dispersion
DE C T, PAOLINI E, LIVA G, et al. Reliability options for data communications in the future deep-space missions[J]. Proceedings of the IEEE, 2011, 99(11): 2056-2074.
ZHAN Y F, WAN P, JIANG C X, et al. Challenges and solutions for the satellite tracking, telemetry, and command system[J]. IEEE Wireless Communications, 2020, 27(6): 12-18.
马文峰, 王聪, 田辉, 等. 火星探测中的深空测控通信关键技术[J]. 物联网学报, 2023, 7(1): 149-158.
MA W F, WANG C, TIAN H, et al. Key technologies of deep space TT & C and telecommunication for Mars exploration[J]. Chinese Journal on Internet of Things, 2023, 7(1): 149-158.
齐航天, 张晓林, 朱丽锦. 一种新型的用于深空高动态微弱信号载波跟踪环[J]. 中国空间科学技术, 2020, 40(1): 19-26.
QI H T, ZHANG X L, ZHU L J. Carrier loop for high dynamic and weak signal in deep space[J]. Chinese Space Science and Technology, 2020, 40(1): 19-26.
YANG R, ZHAN X Q, CHEN W T, et al. An iterative filter for FLL-assisted-PLL carrier tracking at low C/N0 and high dynamic conditions[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(1): 275-289.
WANG J W, JIANG C X, KUANG L L. High-mobility satellite-UAV communications: challenges, solutions, and future research trends[J]. IEEE Communications Magazine, 2022, 60(5): 38-43.
VILÀ-VALLS J, NAVARRO M, CLOSAS P, et al. Synchronization challenges in deep space communications[J]. IEEE Aerospace and Electronic Systems Magazine, 2019, 34(1): 16-27.
WANG T Q, LI C, MENG W X, et al. EM-based adaptive frequency domain estimation of Doppler shifts with CRLB analysis for CDMA systems[J]. IEEE Transactions on Communications, 2012, 60(1): 198-208.
邓乐乐, 周方明, 赵璐璐, 等. 基于奇异值分解的压缩感知GNSS信号捕获算法[J]. 中国科学院大学学报, 2023, 40(1): 128-134.
DENG L L, ZHOU F M, ZHAO L L, et al. Compressed sensing GNSS signal acquisition algorithm based on singular value decomposition[J]. Journal of University of Chinese Academy of Sciences, 2023, 40(1): 128-134.
TAHIR M, PRESTI L L, FANTINO M. A novel acquisition strategy for weak GNSS signals based on map criterion [J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(3): 1913-1928.
SPANGENBERG S M, SCOTT I, MCLAUGHLIN S, et al. An FFT-based approach for fast acquisition in spread spectrum communication systems[J]. Wireless Personal Communications, 2000, 13(1): 27-55.
胡建波, 杨莘元, 卢满宏. 一种基于FFT的高动态扩频信号的快速捕获方法[J]. 遥测遥控, 2004, 25(6): 19-24.
HU J B, YANG X Y, LU M H. An FFT based method for fast acquisition of high dynamic DS spread spectrum signals[J]. Telemetry & Telecontrol, 2004, 25(6): 19-24.
LINTY N, PRESTI L L. Doppler frequency estimation in GNSS receivers based on double FFT[J]. IEEE Transactions on Vehicular Technology, 2016, 65(2): 509-524.
BORIO D, O’DRISCOLL C, LACHAPELLE G. Coherent, noncoherent, and differentially coherent combining techniques for acquisition of new composite GNSS signals[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(3): 1227-1240.
ZHU C, FAN X N. A novel method to extend coherent integration for weak GPS signal acquisition[J]. IEEE Communications Letters, 2015, 19(8): 1343-1346.
熊竹林, 安建平. 一种低复杂度的低信噪比非相干直扩信号捕获算法[J]. 电子学报, 2016, 44(4): 753-760.
XIONG Z L, AN J P. A low complexity acquisition algorithm for DSSS signal with low SNR and non-coherent data modulation [J]. Acta Electronica Sinica, 2016, 44(4): 753-760.
PEI S C, HUANG S G. STFT with adaptive window width based on the chirp rate[J]. IEEE Transactions on Signal Processing, 2012, 60(8): 4065-4080.
WANG T, HUAN H, FENG C Y, et al. Chirp noise waveform aided fast acquisition approach for large Doppler shifted TT&C system[C]//Proceedings of 2015 IEEE Global Communications Conference (GLOBECOM). Piscataway: IEEE Press, 2015: 1-6.
潘毅, 张天骐, 张刚, 等. 高动态BOC信号捕获算法[J]. 通信学报, 2019, 40(6): 82-89.
PAN Y, ZHANG T Q, ZHANG G, et al. Acquisition algorithm for BOC signals in high dynamic environment[J]. Journal on Communications, 2019, 40(6): 82-89.
YASOTHARAN A, THAYAPARAN T. Strengths and limitations of the Fourier method for detecting accelerating targets by pulse Doppler radar[J]. IEE Proceedings - Radar, Sonar and Navigation, 2002, 149(2): 83.
MOO P W, DING Z. Tracking performance of MIMO radar for accelerating targets[J]. IEEE Transactions on Signal Processing, 2013, 61(21): 5205-5216.
AMIRI S, MEHDIPOUR M. Accurate Doppler frequency shift estimation for any satellite orbit[C]//Proceedings of 2007 3rd International Conference on Recent Advances in Space Technologies. Piscataway: IEEE Press, 2007: 602-607.
MORELLI M. Doppler-rate estimation for burst digital transmission[J]. IEEE Transactions on Communications, 2002, 50(5): 707-710.
关磊, 司江勃, 李赞, 等. 高动态环境下联合导频与Viterbi的同步技术[J]. 西安电子科技大学学报, 2022, 49(2): 21-28.
GUAN L, SI J B, LI Z, et al. Joint pilot and Viterbi decoding synchronization technology in high-dynamic environments[J]. Journal of Xidian University, 2002, 49(2): 21-28.
YAO Y Q, XU X S, LI Y, et al. A hybrid IMM based INS/DVL integration solution for underwater vehicles[J]. IEEE Transactions on Vehicular Technology, 2019, 68(6): 5459-5470.
孟照魁, 王文杰, 高爽, 等. 高动态下SINS辅助北斗捕获方法优化[J]. 宇航学报, 2017, 38(1): 34-40.
MENG Z K, WANG W J, GAO S, et al. Optimization method of Bei Dou acquisition aided with SINS in high dynamic condition[J]. Journal of Astronautics, 2017, 38(1): 34-40.
ZHANG Z W, LIU H, YIN J, et al. Clustering-FFT based Doppler-shift acquisition for space communications[J]. IEEE Transactions on Communications, 2022, 70(2): 1168-1182.
DIVSALAR D, NET M S, CHEUNG K M. Adaptive sweeping carrier acquisition and tracking for dynamic links with high uplink Doppler[C]//Proceedings of 2020 IEEE Aerospace Conference. Piscataway: IEEE Press, 2020: 1-14.
ORTEGA T, NET M S, CHEUNG K M, et al. Adaptive-sweep algorithm for spacecraft carrier acquisition and tracking: system analysis and implementation[C]//Proceedings of 2021 IEEE Aerospace Conference (50100). Piscataway: IEEE Press, 2021: 1-9.
王永庆, 高磊, 吴嗣亮. 大动态直扩信号的快速捕获方法[J]. 北京理工大学学报, 2010, 30(1): 92-94+122.
WANG Y Q, GAO L, WU S L. Fast acquisition method for high dynamic DSSS signal[J]. Transactions of Beijing Institute of Technology, 2010, 30(1): 92-94+122.
SHI X S, SHEN Y Y, WANG Y Q. Fuzzy logic control for Doppler search in DSSS systems[J]. IEEE Transactions on Fuzzy Systems, 2020, 28(9): 2232-2243.
HE Y G, SHI X S, WANG Y Q, et al. Intelligent search strategy for Doppler frequency based on fuzzy logic in DSSS signal acquisition[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(4): 4709-4720.
ABOUTANIOS E, MULGREW B. Iterative frequency estimation by interpolation on Fourier coefficients[J]. IEEE Transactions on Signal Processing, 2005, 53(4): 1237-1242.
WANG J W, JIANG C X, KUANG L L, et al. Iterative Doppler frequency offset estimation in satellite high-mobility communications[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(12): 2875-2888.
姜春晓, 王佳蔚. 高动态卫星DSSS信号Turbo迭代捕获算法[J]. 通信学报, 2021, 42(8): 15-24.
JIANG C X, WANG J W. Turbo iterative acquisition algorithm for satellite high-mobility DSSS signal[J]. Journal on Communications, 2021, 42(8): 15-24.
ZHANG Z W, CHENG W C, ZHANG H L. Search-range-correction-based Doppler shift acquisition for space communications[J]. IEEE Transactions on Vehicular Technology, 2016, 65(5): 3271-3284.
ZHANG Z W, LIU L, LIU H, et al. Comb-search and hierarchical-clustering based Doppler-shift acquisition for space communications[J]. IEEE Transactions on Vehicular Technology, 2023, 72(7): 9160-9174.
GÜL İ, ERER I. Randomized low-rank and sparse decomposition-based receiver search strategy for electronic support receivers[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(2): 1392-1399.
0
浏览量
5
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构