浏览全部资源
扫码关注微信
南京邮电大学电子与光学工程学院、柔性电子(未来技术)学院,江苏 南京 210023
[ "冯凯辉(1998‒ ),男,南京邮电大学电子与光学工程学院、柔性电子(未来技术)学院硕士生,主要研究方向为毫米波MIMO系统信道估计、流形优化等。" ]
[ "刘陈(1963‒ ),男,博士,南京邮电大学教授、博士生导师,主要研究方向为无线通信中的信号处理、空时信号传输与处理算法、协作通信与干扰对齐方法。" ]
[ "黄钲(1997‒ ),男,南京邮电大学电子与光学工程学院、柔性电子(未来技术)学院博士生,主要研究方向为无线通信信号处理、流形优化。" ]
[ "宋云超(1988‒ ),男,博士,南京邮电大学电子与光学工程学院、柔性电子(未来技术)学院副教授、硕士生导师,主要研究方向为5G、6G无线通信信号处理。" ]
[ "高润勤(1999‒ ),男,南京邮电大学电子与光学工程学院、柔性电子(未来技术)学院硕士生,主要研究方向为毫米波MIMO系统信道估计、流形优化等。" ]
纸质出版日期:2024-12-10,
收稿日期:2023-05-26,
修回日期:2024-08-19,
移动端阅览
冯凯辉, 刘陈, 黄钲, 等. 基于张量分解和流形优化的双IRS辅助毫米波MIMO系统信道估计[J]. 物联网学报, 2024,8(4):119-128.
FENG KAIHUI, LIU CHEN, HUANG ZHENG, et al. Channel estimation for double IRS-assisted millimeter wave MIMO systems based on tensor decomposition and manifold optimization. [J]. Chinese journal on internet of things, 2024, 8(4): 119-128.
冯凯辉, 刘陈, 黄钲, 等. 基于张量分解和流形优化的双IRS辅助毫米波MIMO系统信道估计[J]. 物联网学报, 2024,8(4):119-128. DOI: 10.11959/j.issn.2096-3750.2024.00378.
FENG KAIHUI, LIU CHEN, HUANG ZHENG, et al. Channel estimation for double IRS-assisted millimeter wave MIMO systems based on tensor decomposition and manifold optimization. [J]. Chinese journal on internet of things, 2024, 8(4): 119-128. DOI: 10.11959/j.issn.2096-3750.2024.00378.
针对双智能反射面(IRS
intelligent reflecting surface)辅助毫米波多入多出(MIMO
multiple-input multiple-output)系统信道估计问题,提出一种基于张量分解和流形优化的信道估计方案。首先,利用接收信号的高维特征构建张量模型,并基于张量的Tucker2分解形式给出信道估计问题的目标函数;其次,利用交替优化理论将信道估计问题拆分为多个子问题,为双IRS场景下用户与IRS、双IRS之间和IRS与基站之间信道的分别估计提供了可行方案;最后,考虑毫米波信道本身的低秩特性,将各个信道估计子问题转化为在复定秩矩阵流形上的优化问题,利用复定秩流形优化求解秩受限优化问题的优势,提出基于流形优化的交替信道估计方案。不同于传统方案,所提方案考虑了毫米波信道的低秩特性,对信道进行了准确描述,并应用流形优化理论有效处理定秩约束,提高了信道估计精度。仿真结果表明,在不同场景下所提方案的估计性能均优于现有参考方案。
The issue of channel estimation for a double intelligent reflecting surface (IRS) assisted millimeter wave multiple-input multiple-output (MIMO) system was addressed and a channel estimation scheme based on tensor decomposition and manifold optimization was proposed. Specifically
a tensor model was constructed based on the high-dimensional features of received signals
and the objective function of the channel estimation problem was formulated based on the Tucker2 decomposition of the tensor. Then
the channel estimation problem was decomposed into multiple sub-problems using alternating optimization theory
providing feasible solutions for estimating the channel of each hop in the double IRS scenario. Finally
considering the low-rank characteristics of the millimeter wave channel itself
each channel estimation sub-problem was transformed into an optimization problem on the complex fixed-rank matrix manifold
and a manifold optimization-based alternating channel estimation scheme was proposed by leveraging the advantages of fixed-rank manifold optimization in solving rank-constrained optimization problems. Unlike traditional schemes
the proposed scheme takes into account the low-rank characteristics of millimeter wave channels
accurately describes the channels
and effectively handles fixed-rank constraints using manifold optimization theory
thus improving the accuracy of channel estimation. Simulation results show that the proposed channel estimation scheme outperforms existing reference schemes in terms of estimation performance in different scenarios.
毫米波MIMO系统双智能反射面信道估计流形优化张量分解
millimeter wave MIMO systemdouble IRSchannel estimationmanifold optimizationtensor decomposition
WU Q Q, ZHANG R. Towards smart and reconfigurable environment: intelligent reflecting surface aided wireless network[J]. IEEE Communications Magazine, 2020, 58(1): 106-112.
YANG L, MENG F X, ZHANG J Y, et al. On the performance of RIS-assisted dual-hop UAV communication systems[J]. IEEE Transactions on Vehicular Technology, 2020, 69(9): 10385-10390.
BAI T, PAN C H, HAN C, et al. Reconfigurable intelligent surface aided mobile edge computing[J]. IEEE Wireless Communications, 2021, 28(6): 80-86.
ZHANG K P, LIU C, WANG H, et al. An IRS-aided mmWave massive MIMO systems based on genetic algorithm[C]//Proceedings of the 2020 IEEE 20th International Conference on Communication Technology (ICCT). Piscataway: IEEE Press, 2020: 288-293.
DE ARAÚJO G T, DE ALMEIDA A L F, BOYER R, et al. Semi-blind joint channel and symbol estimation for IRS-assisted MIMO systems[J]. IEEE Transactions on Signal Processing, 2023, 71: 1184-1199.
WU Q Q, ZHANG R. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming[J]. IEEE Transactions on Wireless Communications, 2019, 18(11): 5394-5409.
WANG Z R, LIU L, CUI S G. Channel estimation for intelligent reflecting surface assisted multiuser communications: framework, algorithms, and analysis[J]. IEEE Transactions on Wireless Communications, 2020, 19(10): 6607-6620.
WANG P L, FANG J, DUAN H P, et al. Compressed channel estimation for intelligent reflecting surface-assisted millimeter wave systems[J]. IEEE Signal Processing Letters, 2020, 27: 905-909.
GUAN X R, WU Q Q, ZHANG R. Anchor-assisted channel estimation for intelligent reflecting surface aided multiuser communication[J]. IEEE Transactions on Wireless Communications, 2022, 21(6): 3764-3778.
HE Z Q, YUAN X J. Cascaded channel estimation for large intelligent metasurface assisted massive MIMO[J]. IEEE Wireless Communications Letters, 2020, 9(2): 210-214.
DE ARAÚJO G T, DE ALMEIDA A L F, BOYER R. Channel estimation for intelligent reflecting surface assisted MIMO systems: a tensor modeling approach[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(3): 789-802.
HUANG Z, LIU C, SONG Y C, et al. Channel estimation for IRS-assisted multi-user millimeter wave MIMO systems[C]//Proceedings of the 2021 13th International Conference on Wireless Communications and Signal Processing (WCSP). Piscataway: IEEE Press, 2021: 1-6.
LIN T, YU X H, ZHU Y, et al. Channel estimation for IRS-assisted millimeter-wave MIMO systems: sparsity-inspired approaches[J]. IEEE Transactions on Communications, 2022, 70(6): 4078-4092.
MEI W D, ZHENG B X, YOU C S, et al. Intelligent reflecting surface-aided wireless networks: from single-reflection to multireflection design and optimization[J]. Proceedings of the IEEE, 2022, 110(9): 1380-1400.
KUMAR C, KUMAR A, KASHYAP S. Bit error rate analysis of double IRS assisted communication system under transceiver hardware impairments[C]//Proceedings of the 2023 National Conference on Communications (NCC). Piscataway: IEEE Press, 2023: 1-6.
李祥森. 基于双IRS辅助的毫米波MIMO通信信道估计[J]. 无线电通信技术, 2022, 48(2): 269-275.
LI X S. Channel estimation of millimeter wave MIMO communication based on double IRS assistance[J]. Radio Communications Technology, 2022, 48(2): 269-275.
BAZZI S, XU W. IRS parameter optimization for channel estimation MSE minimization in double-IRS aided systems[J]. IEEE Wireless Communications Letters, 2022, 11(10): 2170-2174.
YOU C S, ZHENG B X, ZHANG R. Wireless communication via double IRS: channel estimation and passive beamforming designs[J]. IEEE Wireless Communications Letters, 2021, 10(2): 431-435.
HAN Y T, ZHANG S W, DUAN L J, et al. Cooperative double-IRS aided communication: beamforming design and power scaling[J]. IEEE Wireless Communications Letters, 2020, 9(8): 1206-1210.
HAN Y T, ZHANG S W, DUAN L J, et al. Double-IRS aided MIMO communication under LoS channels: capacity maximization and scaling[J]. IEEE Transactions on Communications, 2022, 70(4): 2820-2837.
JIANG H, ZHANG Z C, XIONG B P, et al. A 3D stochastic channel model for 6G wireless double-IRS cooperatively assisted MIMO communications[C]//Proceedings of the 2021 13th International Conference on Wireless Communications and Signal Processing (WCSP). Piscataway: IEEE Press, 2021: 1-5.
ZHENG B X, YOU C S, ZHANG R. Uplink channel estimation for double-IRS assisted multi-user MIMO[C]//Proceedings of the ICC 2021-IEEE International Conference on Communications. Piscataway: IEEE Press, 2021: 1-6.
ZHENG B X, YOU C S, ZHANG R. Efficient channel estimation for double-IRS aided multi-user MIMO system[J]. IEEE Transactions on Communications, 2021, 69(6): 3818-3832.
ARDAH K, GHEREKHLOO S, DE ALMEIDA A L F, et al. Double-RIS versus single-RIS aided systems: tensor-based mimo channel estimation and design perspectives[C]//Proceedings of the ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Piscataway: IEEE Press, 2022: 5183-5187.
米连锋, 何雪云, 孙林慧. RIS辅助无线系统中基于压缩感知的稀疏度自适应级联信道估计方法研究[J]. 信号处理, 2022, 38(10): 2173-2179.
MI L F, HE X Y, SUN L H. Research on sparse adaptive cascade channel estimation method based on compressed sensing in RIS assisted wireless system[J]. Journal of Signal Processing, 2022, 38(10): 2173-2179.
DU J H, HAN M, CHEN Y Z, et al. Tensor-based joint channel estimation and symbol detection for time-varying mmWave massive MIMO systems[J]. IEEE Transactions on Signal Processing, 2021, 69: 6251-6266.
SHEWCHUK J R, An introduction to the conjugate gradient method without the agonizing pain[D]. Pittsburgh:Carnegie Mellon University Press, 1994.
TAKEDA K, ADACHI F. Frequency-domain MMSE channel estimation for frequency-domain equalization of DS-CDMA signals[J]. IEICE TRANSACTIONS on Communications, 2007, 90(7): 1746-1753.
HU J F, YIN H F, BJÖRNSON E. MmWave MIMO communication with semi-passive RIS: a low-complexity channel estimation scheme[C]//Proceedings of the 2021 IEEE Global Communications Conference (GLOBECOM). Piscataway: IEEE Press, 2021: 1-6.
LI T Y, TONG H W, XU Y Y, et al. Double IRSs aided massive MIMO channel estimation and spectrum efficiency maximization for high-speed railway communications[J]. IEEE Transactions on Vehicular Technology, 2022, 71(8): 8630-8645.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构