浏览全部资源
扫码关注微信
1. 河北工程大学信息与电气工程学院,河北 邯郸 056038
2. 河北省安防信息感知与处理重点实验室,河北 邯郸 056038
3. 河北工程大学水利水电学院,河北 邯郸 056038
[ "魏忠诚(1987‒ ),男,博士,河北工程大学信息与电气工程学院副教授,主要研究方向为物联网、人工智能、无线感知" ]
[ "陈炜(2000‒ ),男,河北工程大学信息与电气工程学院硕士生,主要研究方向为无线感知、身份识别" ]
[ "董延虎(1994‒ ),男,河北工程大学信息与电气工程学院硕士生,主要研究方向为无线感知、身份识别" ]
[ "连彬(1988‒ ),女,河北工程大学水利水电学院博士生,主要研究方向为无线感知、智慧水利" ]
[ "王巍(1983‒ ),男,博士,河北工程大学信息与电气工程学院教授,主要研究方向为无人机与物联网、优化理论、推荐系统" ]
[ "赵继军(1970‒ ),男,博士,河北工程大学信息与电气工程学院教授、博士生导师,主要研究方向为光通信、物联网、城市公共安全" ]
纸质出版日期:2024-03-30,
网络出版日期:2024-03,
移动端阅览
魏忠诚, 陈炜, 董延虎, 等. 基于Wi-Fi感知的多用户身份识别研究[J]. 物联网学报, 2024,8(1):111-121.
ZHONGCHENG WEI, WEI CHEN, YANHU DONG, et al. Research on multi-user identity recognition based on Wi-Fi sensing. [J]. Chinese journal on internet of things, 2024, 8(1): 111-121.
魏忠诚, 陈炜, 董延虎, 等. 基于Wi-Fi感知的多用户身份识别研究[J]. 物联网学报, 2024,8(1):111-121. DOI: 10.11959/j.issn.2096-3750.2024.00381.
ZHONGCHENG WEI, WEI CHEN, YANHU DONG, et al. Research on multi-user identity recognition based on Wi-Fi sensing. [J]. Chinese journal on internet of things, 2024, 8(1): 111-121. DOI: 10.11959/j.issn.2096-3750.2024.00381.
随着无线感知技术的发展,基于Wi-Fi的身份识别研究在人机交互和家居安防等领域备受关注。尽管基于Wi-Fi信号的身份识别已经取得了初步的成功,但是目前主要适用于用户独立行为场景,并发行为下的多用户身份识别仍然面临着一系列挑战,包括用户之间的相互干扰以及模型鲁棒性差等问题。因此,提出了一种并发行为下多用户身份识别系统Wiblack,其核心思想是训练一个多分支深度神经网络(Wiblack-Net)来提取每个单用户的独特特征。首先,利用主干网络提取多用户之间的共同特征;然后,为每个用户分配一个二分类器以此判断给定群体中是否存在目标用户,在此基础上基于并发行为实现多个用户身份识别。此外,将Wiblack与多个独立的二分类模型和单个多分类模型进行对比实验,对运行效率和系统性能进行分析。实验结果显示,在同时识别3个用户身份时,Wibalck平均准确率达到了92.97%,平均精确度为93.71%,平均召回率为93.24%,平均F1值为92.43%。
With the advancement of wireless sensing technology
research on Wi-Fi-based identity recognition has garnered significant attention in fields such as human-computer interaction and home security.While identity recognition based on Wi-Fi signals has achieved initial success
it is currently primarily suitable for scenarios involving individual user behavior.Identity recognition for multiple users in concurrent behavior scenarios still faces a series of challenges
including issues related to mutual interference between users and poor model robustness.Therefore
a Wiblack system for recognizing multiple user identities in a concurrent distribution behavior scenario was proposed.The core idea was to train a multi-branch deep neural network (Wiblack-Net) to extract unique features for each individual user.Firstly
the common features among multiple users were extracted using the backbone network.Then
a binary classifier was assigned to each user to determine the presence of the target user within a given group
thereby achieving identity recognition for multiple users based on concurrent behavior.In addition
experiments comparing Wiblack with several independent binary classification models and a single multiclassification model were conducted to analyze operational efficiency.System performance experimental results demonstrate that when simultaneously identifying the identities of three users
Wibalck achieves an average accuracy of 92.97%
an average precision of 93.71%
an average recall of 93.24%
and an average F1 score of 92.43%.
Wi-Fi感知信道状态信息身份识别多人识别多分支深度神经网络
Wi-Fi sensingchannel state informationidentity recognitionmulti-user recognitionmulti-branch deep neural network
XIAO C J, LEI Y, MA Y S ,et al. DeepSeg:deep-learning-based activity segmentation framework for activity recognition using WiFi[J]. IEEE Internet of Things Journal, 2021,8(7): 5669-5681.
CHEN X, LI H, ZHOU C Y ,et al. Fidora:robust WiFi-based indoor localization via unsupervised domain adaptation[J]. IEEE Internet of Things Journal, 2022,9(12): 9872-9888.
ZHANG J, WEI B, WU F X ,et al. Gate-ID:WiFi-based human identification irrespective of walking directions in smart home[J]. IEEE Internet of Things Journal, 2021,8(9): 7610-7624.
DING J Y, WANG Y, SI H Y ,et al. Three-dimensional indoor localization and tracking for mobile target based on WiFi sensing[J]. IEEE Internet of Things Journal, 2022,9(21): 21687-21701.
HU Y Q, ZHANG F, WU C S ,et al. DeFall:environmentindependent passive fall detection using WiFi[J]. IEEE Internet of Things Journal, 2022,9(11): 8515-8530.
BAO N, DU J J, WU C Y ,et al. Wi-breath:a WiFi-based contactless and real-time respiration monitoring scheme for remote healthcare[J]. IEEE Journal of Biomedical and Health Informatics, 2023,27(5): 2276-2285.
YU B H, WANG Y X, NIU K ,et al. WiFi-sleep:sleep stage monitoring using commodity Wi-Fi devices[J]. IEEE Internet of Things Journal, 2021,8(18): 13900-13913.
SARANYA R, KARTHIKEYAN C, KUMAR V S N ,et al. Computer vision on identifying persons under real time surveillance using IOT[C]// Proceedings of 2020 International Conference on System,Computation,Automation and Networking (ICSCAN). Pisca taway:IEEE Press, 2020: 1-5.
HARIKRISHNAN J, SUDARSAN A, SADASHIV A ,et al. Vision-face recognition attendance monitoring system for surveillance using deep learning technology and computer vision[C]// Proceedings of 2019 International Conference on Vision Towards Emerging Trends in Communication and Networking (ViTECoN). Piscataway:IEEE Press, 2019: 1-5.
LIU F X, JIANG Q . Research on recognition of criminal suspects based on foot sounds[C]// Proceedings of 2019 IEEE 3rd Information Technology,Networking,Electronic and Automation Control Conference (ITNEC). Piscataway:IEEE Press, 2019: 1347-1351.
WAN H R, WANG L, ZHAO T ,et al. Vector[J]. Proceedings of the ACM on Interactive,Mobile,Wearable and Ubiquitous Technologies, 2022,6(3): 1-28.
YAN J W, LOU P, LI R Y ,et al. Research on the multiple factors influencing human identification based on pyroelectric infrared sensors[J]. Sensors, 2018,18(2): 604.
VERA-RODRIGUEZ R, MASON J S D, FIERREZ J ,et al. Comparative analysis and fusion of spatiotemporal information for footstep recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013,35(4): 823-834.
MOKHTARI G, ZHANG Q, HARGRAVE C ,et al. Non-wearable UWB sensor for human identification in smart home[J]. IEEE Sensors Journal, 2017,17(11): 3332-3340.
ALKASIMI A, SHEPARD T, WAGNER S ,et al. Dual-biometric human identification using radar deep transfer learning[J]. Sensors, 2022,22(15): 5782.
QIAN K, WU C S, ZHANG Y ,et al. Widar2.0:passive human tracking with a single Wi-Fi link[C]// Proceedings of the 16th Annual International Conference on Mobile Systems,Applications,and Services. New York:ACM, 2018: 350-361.
WU Z F, XIAO X Y, LIN C ,et al. WiDFF-ID:device-free fast person identification using commodity WiFi[J]. IEEE Transactions on Cognitive Communications and Networking, 2023,9(1): 198-210.
DING J Y, WANG Y, FU X C . Wihi:WiFi based human identity identification using deep learning[J]. IEEE Access, 2020,8: 129246-129262.
OU R M, CHEN Y J, DENG Y T . WiWalk:gait-based dual-user identification using WiFi device[J]. IEEE Internet of Things Journal, 2023,10(6): 5321-5334.
KORANY B, CAI H, MOSTOFI Y . Multiple people identification through walls using off-the-shelf WiFi[J]. IEEE Internet of Things Journal, 2021,8(8): 6963-6974.
HALPERIN D, HU W, SHETH A ,et al. Tool release:gathering 802.11 n traces with channel state information[J]. ACM SIGCOMM computer communication review, 2011,41(1): 53-53.
ZHANG J, WEI B, HU W ,et al. WiFi-ID:human identification using WiFi signal[C]// Proceedings of 2016 International Conference on Distributed Computing in Sensor Systems (DCOSS). Piscataway:IEEE Press, 2016: 75-82.
ZENG Y Z, PATHAK P H, MOHAPATRA P . WiWho:WiFi-based person identification in smart spaces[C]// Proceedings of 2016 15th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN). Piscataway:IEEE Press, 2016: 1-12.
WANG W, LIU A X, SHAHZAD M . Gait recognition using WiFi signals[C]// Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing. New York:ACM, 2016: 363-373.
YANG Y N, CAO J N, LIU X F ,et al. Multi-person sleeping respiration monitoring with COTS WiFi devices[C]// Proceedings of 2018 IEEE 15th International Conference on Mobile Ad Hoc and Sensor Systems (MASS). Piscataway:IEEE Press, 2018: 37-45.
GUAN L, ZHANG Z Y, YANG X D ,et al. Multi-person breathing detection with switching antenna array based on WiFi signal[J]. IEEE Journal of Translational Engineering in Health and Medicine, 2022,11: 23-31.
KONG H, LU L, YU J D ,et al. Toward multi-user authentication using WiFi signals[J]. IEEE/ACM Transactions on Networking, 2023,31(5): 2117-2132.
LIU W Y, WANG S Y, WANG L . A multiperson behavior feature generation model based on noise reduction using WiFi[J]. IEEE Transactions on Industrial Electronics, 2020,67(6): 5179-5186.
HE J, YANG W . IMar:multi-user continuous action recognition with WiFi signals[J]. Proceedings of the ACM on Interactive,Mobile,Wearable and Ubiquitous Technologies, 6(3): 1-27.
DUAN P S, LI C, LI J ,et al. WISDOM:Wi-Fi-based contactless multiuser activity recognition[J]. IEEE Internet of Things Journal, 2023,10(2): 1876-1886.
0
浏览量
64
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构