浏览全部资源
扫码关注微信
1.重庆邮电大学通信与信息工程学院,重庆 400065
2.移动通信技术重庆市重点实验室,重庆 400065
[ "申滨(1978‒ ),男,博士,重庆邮电大学通信与信息工程学院教授,主要研究方向为下一代移动通信、大规模MIMO系统、认知无线电等。" ]
[ "元文军(1997‒ ),女,重庆邮电大学通信与信息工程学院硕士生,主要研究方向为图论、无线通信资源分配。" ]
[ "李旋(2000‒ ),男,重庆邮电大学通信与信息工程学院硕士生,主要研究方向为语义通信资源分配。" ]
纸质出版日期:2024-06-10,
收稿日期:2023-12-15,
修回日期:2024-04-25,
移动端阅览
申滨,元文军,李旋.基于加权二部图与干扰聚类的D2D通信上下行联合资源分配[J].物联网学报,2024,08(02):1-15.
SHEN Bin,YUAN Wenjun,LI Xuan.Joint uplink and downlink resource allocation for D2D communication based on weighted bipartite graph matching and interference clustering[J].Chinese Journal on Internet of Things,2024,08(02):1-15.
申滨,元文军,李旋.基于加权二部图与干扰聚类的D2D通信上下行联合资源分配[J].物联网学报,2024,08(02):1-15. DOI: 10.11959/j.issn.2096-3750.2024.00383.
SHEN Bin,YUAN Wenjun,LI Xuan.Joint uplink and downlink resource allocation for D2D communication based on weighted bipartite graph matching and interference clustering[J].Chinese Journal on Internet of Things,2024,08(02):1-15. DOI: 10.11959/j.issn.2096-3750.2024.00383.
设备对设备(D2D
device-to-device)通信是一种能够有效提高蜂窝网络频谱效率的短距离通信技术。联合考虑上下行子信道全频域资源复用,针对蜂窝网络中“多对多”的复杂情况(即一个子信道可以分配给多对D2D用户设备(DUE
D2D user equipment),一对DUE也可以同时使用多个子信道),提出了一种两阶段子信道和功率联合分配方案。第一阶段,提出基于加权二部图匹配的资源分配(WBGM-RA
weighted bipartite graph matching-based resource allocation)算法,将系统中的全部子信道分配给所有蜂窝用户设备(CUE
cellular user equipment),以最大化CUE和速率。第二阶段,提出基于干扰聚类的资源分配(IC-RA
interference clustering-based resource allocation)算法,根据共享同一子信道的UE之间的干扰关系构建干扰矩阵,在确保DUE不会对CUE造成严重干扰的情况下,将分配给CUE的资源再次分配给DUE,同时调整DUE的发射功率,以最大化系统和速率。该方案形成的新型的上下行信道联合资源分配与多对多信道复用机制,使得DUE的频谱接入机会与网络的总体频谱效率均大幅度提高。仿真结果表明,与现有典型算法相比,该算法可以有效地提高系统和速率,增加系统中通信链路数量并提高DUE接入率。
Device-to-device (D2D) communication is a short-range communication technology that can effectively improve the spectral efficiency of cellular networks. A two-stage subchannel and power joint allocation scheme was proposed to address the complex scenario of "many-to-many" communication in cellular networks (one subchannel could be assigned to multiple pairs of D2D user equipment (DUE)
and one pair of DUE could also use multiple subchannels at the same time)
considering the full frequency domain resource reuse in both uplink and downlink subchannels. In the first stage
a weighted bipartite graph matching-based resource allocation (WBGM-RA) algorithm was introduced. This algorithm allocated all subchannels to all cellular user equipment (CUE) to maximize CUE sum rate. In the second stage
an interference clustering-based resource allocation (IC-RA) algorithm was proposed
and the interference matrix was constructed according to the interference relations among UE sharing the same subchannel. Resources allocated to CUE were reallocated to DUE. Moreover
the transmit power of DUE was optimized to maximize the system sum rate while ensured that DUE did not cause serious interference to CUE. This study established a novel joint resource allocation for uplink and downlink subchannels
coupled with a mechanism for "many-to-many" channel reuse. This led to a substantial increase in spectrum access opportunities for DUE and overall spectrum efficiency in the network. Simulation results show that compared with the existing typical algorithm
this algorithm can effectively improve the system sum rate
increase the number of communication links in the system and increase the DUE access rate.
蜂窝网络设备对设备通信上下行资源共享信道分配功率分配
cellular networkdevice-to-device communicationuplink-downlink resource sharingchannel allocationpower allocation
YANG H, YE Y, CHU X, et al. Resource and power allocation in SWIPT-enabled device-to-device communications based on a nonlinear energy harvesting model[J]. IEEE Internet of Things Journal, 2020, 7(11): 10813-10825.
GISMALLA M S M, AZMI A I, SALIM M R B, et al. Survey on device to device (D2D) communication for 5GB/6G networks: concept, applications, challenges, and future directions[J]. IEEE Access, 2022(10): 30792-30821.
VO N S, PHAN T M, BUI M P, et al. Social-aware spectrum sharing and caching helper selection strategy optimized multicast video streaming in dense D2D 5G networks[J]. IEEE Systems Journal, 2020, 15(3): 3480-3491.
KHUNTIA P, HAZRA R. An efficient channel and power allocation scheme for D2D enabled cellular communication system: an IoT application[J]. IEEE Sensors Journal, 2021, 21(22): 25340-25351.
BARIK P K, SHUKLA A, DATTA R, et al. A resource sharing scheme for intercell D2D communication in cellular networks: a repeated game theoretic approach[J]. IEEE Transactions on Vehicular Technology, 2020, 69(7): 7806-7820.
HUANG S, CHUAI G, GAO W. Coalitional games based resource allocation for D2D uplink underlaying hybrid VLC-RF networks[C]//Proceedings of the 2022 IEEE Wireless Communications and Networking Conference (WCNC). Piscataway: IEEE, 2022: 2316-2321.
GBADAMOSI S A, HANCKE G P, ABU-MAHFOUZ A M. Interference avoidance resource allocation for D2D-enabled 5G narrowband internet of things[J]. IEEE Internet of Things Journal, 2022, 9(22): 22752-22764.
SANUSI I O, NASR K M, MOESSNER K. Radio resource management approaches for reliable device-to-device (D2D) communication in wireless industrial applications[J]. IEEE Transactions on Cognitive Communications and Networking, 2020, 7(3): 905-916.
RAGHU T V, KIRAN M. A survey on device to device communications[C]//Proceedings of the 2022 International Conference for Advancement in Technology (ICONAT). Piscataway: IEEE, 2022: 1-6.
ZHANG H, SONG L, HAN Z. Radio resource allocation for device-to-device underlay communication using hypergraph theory[J]. IEEE Transactions on Wireless Communications, 2016, 15(7): 4852-4861.
CAI Y, JIN S, YU W, et al. Cooperative distributed resource allocation in heterogeneous networks with D2D communication[J]. IEEE Transactions on Vehicular Technology, 2023, 72(12): 16426-16440.
HU C G, YANG C D, FANG X T, et al. A D2D resource allocation method for IoT network[C]//Proceedings of the 2021 IEEE International Conference on Electronic Technology, Communication and Information (ICETCI). Piscataway: IEEE, 2021: 58-62.
YUAN Y, YANG T, FENG H, et al. An iterative matching-stackelberg game model for channel-power allocation in D2D underlaid cellular networks[J]. IEEE Transactions on Wireless Communications, 2018, 17(11): 7456-7471.
HUANG J, XING C, GUIZANI M. Power allocation for D2D communications with SWIPT[J]. IEEE Transactions on Wireless Communications, 2020, 19(4): 2308-2320.
TANG W, SUN R X, CHENG F Y. A novel whale algorithm-based optimization method for D2D resource allocation[C]//Proceedings of the 2023 IEEE 18th Conference on Industrial Electronics and Applications (ICIEA). Piscataway: IEEE, 2023: 66-71.
SAWYER N, SMITH D B. Flexible resource allocation in device-to-device communications using stackelberg game theory[J]. IEEE Transactions on Communications, 2018, 67(1): 653-667.
ELNOURANI M, DESHMUKH S, BEFERULL-LOZANO B. Distributed resource allocation in underlay multicast D2D communications[J]. IEEE Transactions on Communications, 2021, 69(5): 3409-3422.
LI W L, QIN X Z, JIA Z H, et al. Resource sharing for cellular-assisted D2D communications with imperfect CSI: a many-to-many strategy[J]. IEEE Systems Journal, 2022, 16(3): 4454-4465.
NAJLA M, BECVAR Z, MACH P. Reuse of multiple channels by multiple D2D pairs in dedicated mode: a game theoretic approach[J]. IEEE Transactions on Wireless Communications, 2021, 20(7): 4313-4327.
申滨, 孙万平, 张楠, 等. 基于加权二部图及贪婪策略的蜂窝网络D2D通信资源分配[J]. 电子与信息学报, 2023, 45(3): 1055-1064.
SHEN B, SUN W P, ZHANG N, et al. Resource allocation based on weighted bipartite graph and greedy strategy for D2D communication in cellular networks[J]. Journal of Electronics & Information Technology, 2023, 45(3): 1055-1064.
ALGEDIR A, REFAI H H. Energy-efficient D2D communication under downlink HetNets[C]//Proceedings of the 2019 IEEE Wireless Communications and Networking Conference (WCNC). Piscataway: IEEE, 2019: 1-6.
DOMINIC S, JACOB L. Distributed resource allocation for D2D communications underlaying cellular networks in time-varying environment[J]. IEEE Communications Letters, 2017, 22(2): 388-391.
LAI W K, WANG Y C, LIN H C, et al. Efficient resource allocation and power control for LTE-A D2D communication with pure D2D model[J]. IEEE Transactions on Vehicular Technology, 2020, 69(3): 3202-3216.
ZHANG R, CHENG X, YANG L, et al. Interference graph-based resource allocation (InGRA) for D2D communications underlaying cellular networks[J]. IEEE Transactions on Vehicular Technology, 2014, 64(8): 3844-3850.
KAI C, XU L, ZHANG J, et al. Joint uplink and downlink resource allocation for D2D communication underlying cellular networks[C]//Proceedings of the 2018 10th International Conference on Wireless Communications and Signal Processing (WCSP). Piscataway: IEEE, 2018: 1-6.
YANG T, ZHANG R, CHENG X, et al. Graph coloring based resource sharing (GCRS) scheme for D2D communications underlaying full-duplex cellular networks[J]. IEEE Transactions on Vehicular Technology, 2017, 66(8): 7506-7517.
PAWAR P, TRIVEDI A. Joint uplink-downlink resource allocation for D2D underlaying cellular network[J]. IEEE Transactions on Communications, 2021, 69(12): 8352-8362.
SHAMAEI S, BAYAT S, HEMMATYAR A M A. Interference-aware resource allocation algorithm for D2D-enabled cellular networks using matching theory[J]. IEEE Transactions on Network and Service Management, 2023.
KAI C, LI H, XU L, et al. Joint subcarrier assignment with power allocation for sum rate maximization of D2D communications in wireless cellular networks[J]. IEEE Transactions on Vehicular Technology, 2019, 68(5): 4748-4759.
KUHN H W. The hungarian method for the assignment problem[J]. Naval Research Logistics Quarterly, 1955, 2(1-2): 83-97.
王方洋, 刘玉铭. 针对带约束匹配搜索的扩展Kuhn-Munkres算法[J]. 北京师范大学学报(自然科学版), 2021, 57(2): 167-172.
WANG F Y, LIU Y M. Extended Kuhn-Munkres algorithm for constrained matching search[J]. Journal of Beijing Normal University(Natural Science), 2021, 57(2): 167-172.
0
浏览量
593
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构