浏览全部资源
扫码关注微信
1.东莞理工学院计算机科学与技术学院,广东 东莞 523808
2.人工智能与数字经济广东省实验室(深圳),广东 深圳 518107
[ "丁凯(1985‒ ),男,博士,东莞理工学院计算机科学与技术学院副教授,主要研究方向为物联网、智慧城市、机器人技术和移动互联应用等。" ]
[ "黄宜都(1998‒ ),男,东莞理工学院计算机科学与技术学院硕士生,主要研究方向为物联网工程、联邦学习和网络流量检测等。" ]
[ "陶铭(1986‒ ),男,博士,东莞理工学院计算机科学与技术学院教授、副院长,主要研究方向为人工智能、边缘计算和云计算等。" ]
[ "谢仁平(1989‒ ),男,博士,东莞理工学院计算机科学与技术学院特聘副研究员,主要研究方向为计算机视觉、图像处理、目标检测、图像分割、图像融合、图像拼接和桥梁检测机器人等。" ]
纸质出版日期:2024-12-10,
收稿日期:2024-10-14,
修回日期:2024-11-25,
移动端阅览
丁凯, 黄宜都, 陶铭, 等. 基于联邦强化学习的面向边缘网络的入侵检测方法研究[J]. 物联网学报, 2024,8(4):140-155.
DING KAI, HUANG YIDU, TAO MING, et al. Research on intrusion detection method for edge networks based on federated reinforcement learning. [J]. Chinese journal on internet of things, 2024, 8(4): 140-155.
丁凯, 黄宜都, 陶铭, 等. 基于联邦强化学习的面向边缘网络的入侵检测方法研究[J]. 物联网学报, 2024,8(4):140-155. DOI: 10.11959/j.issn.2096-3750.2024.00442.
DING KAI, HUANG YIDU, TAO MING, et al. Research on intrusion detection method for edge networks based on federated reinforcement learning. [J]. Chinese journal on internet of things, 2024, 8(4): 140-155. DOI: 10.11959/j.issn.2096-3750.2024.00442.
随着物联网(IoT
Internet of things)设备的迅速普及,针对IoT设备的攻击频率和强度不断上升,因而持续更新安全机制以保障物联网设备的安全显得尤为重要。然而,随着公众隐私意识的增强,越来越多的数据集不再对外共享,形成数据“孤岛”现象,阻碍了物联网安全防护能力的提升。为了解决这一问题,提出了一种基于联邦强化学习的入侵检测方法,并通过医疗物联网(IoMT
Internet of medical things)和车联网(IoV
Internet of vehicles)场景下的两个数据集进行实验验证。为模拟真实环境,在每个边缘代理中设计了不平衡的流量样本分布,进而评估全局模型的检测精度和鲁棒性。采用双深度Q网络(DDQN
double deep Q-network)为边缘代理的强化学习框架,并通过准确率、精确率、召回率和F1分数对实验结果进行评估。实验结果表明,提出的方法具有良好的鲁棒性和检测精度。
With the rapid proliferation of Internet of things (IoT) devices
the frequency and intensity of attacks targeting these devices are constantly increasing. Therefore
it's quite important that security mechanisms are continuously updated to ensure the safety of IoT devices. However
as public awareness of privacy grows
many datasets are no longer shared
leading to the emergence of data silos
which hinders the improvement of IoT security. To address this issue
a federated reinforcement learning-based intrusion detection method was proposed
and experiments were conducted using two datasets from the Internet of medical things (IoMT) and Internet of vehicles (IoV) scenarios. Imbalanced traffic sample distributions were designed for each edge agent to simulate a real-world environment
allowing for the evaluation of the detection accuracy and robustness of the global model. Double deep Q-network (DDQN) was employed as the reinforcement learning framework for the edge agents
and the experimental results were evaluated using accuracy
precision
recall
and F1-score. The results demonstrate that the proposed method exhibits strong robustness and detection accuracy.
联邦强化学习入侵检测物联网安全物联网
federated reinforcement learningintrusion detectionIoT securityIoT
BACE R G, MELL P. Intrusion detection systems[M]. Special Publication (NIST SP), 2001: 1-51.
LIAO H J, LIN C H R, LIN Y C, et al. Intrusion detection system: a comprehensive review[J]. Journal of Network and Computer Applications, 2013, 36(1): 16-24.
梁浩然, 伍军, 赵程程, 等. 基于博弈优化边缘学习的物联网入侵检测研究[J]. 物联网学报, 2021, 5(2): 37-47.
LIANG H R, WU J, ZHAO C C, et al. Leveraging edge learning and game theory for intrusion detection in Internet of things[J]. Chinese Journal on Internet of Things, 2021, 5(2): 37-47.
KIZZA J M. System intrusion detection and prevention[M]. Texts in Computer Science. Cham: Springer International Publishing, 2024: 295-323.
YOUNUS Z, ALANEZI M. A survey on network security monitoring: tools and functionalities[J]. Mustansiriyah Journal of Pure and Applied Sciences, 2023, 1(2): 55-86.
MISHRA N, PANDYA S. Internet of things applications, security challenges, attacks, intrusion detection, and future visions: a systematic review[J]. IEEE Access, 2021, 9: 59353-59377.
HEIDARI A, ALI JABRAEIL JAMALI M. Internet of things intrusion detection systems: a comprehensive review and future directions[J]. Cluster Computing, 2023, 26(6): 3753-3780.
LIU Y X, WANG J, LI J Q, et al. Machine learning for the detection and identification of Internet of things devices: a survey[J]. IEEE Internet of Things Journal, 2022, 9(1): 298-320.
AKSOY A, GUNES M H. Automated IoT device identification using network traffic[C]//Proceedings of the ICC 2019 - 2019 IEEE International Conference on Communications (ICC). Piscataway: IEEE Press, 2019: 1-7.
KOSTAS K, JUST M, LONES M A. IoTDevID: a behavior-based device identification method for the IoT[J]. IEEE Internet of Things Journal, 2022, 9(23): 23741-23749.
SALMAN O, ELHAJJ I H, CHEHAB A, et al. A machine learning based framework for IoT device identification and abnormal traffic detection[J]. Transactions on Emerging Telecommunications Technologies, 2022, 33(3): e3743.
VENKATESAN S. Design an intrusion detection system based on feature selection using ML algorithms[J]. Mathematical Statistician and Engineering Applications, 2023, 72(1): 702-10.
LUO Y T, CHEN X, GE N, et al. Transformer-based device-type identification in heterogeneous IoT traffic[J]. IEEE Internet of Things Journal, 2023, 10(6): 5050-5062.
LU Q, YANG Z K, ZHANG H L, et al. MRFE: a deep-learning-based multidimensional radio frequency fingerprinting enhancement approach for IoT device identification[J]. IEEE Internet of Things Journal, 2024, 11(18): 30442-30454.
KALWAR J H, BHATTI S. Deep learning approaches for network traffic classification in the Internet of things (IoT): a survey[J]. arXiv preprint, 2024, arXiv: 240200920.
KILICHEV D, KIM W. Hyperparameter optimization for 1D-CNN-based network intrusion detection using GA and PSO[J]. Mathematics, 2023, 11(17): 3724.
SHARMA B, SHARMA L, LAL C, et al. Explainable artificial intelligence for intrusion detection in IoT networks: a deep learning based approach[J]. Expert Systems with Applications, 2024, 238: 121751.
ZHANG Z, LIU F, GE Y, et al. An intrusion detection method based on depthwise separable convolution and attention mechanism[J]. Chinese Journal on Internet of Things, 2023, 7(1): 49-59.
DU J W, YANG K, HU Y J, et al. NIDS-CNNLSTM: network intrusion detection classification model based on deep learning[J]. IEEE Access, 2023, 11: 24808-24821.
LAGHRISSI F, DOUZI S, DOUZI K, et al. Intrusion detection systems using long short-term memory (LSTM)[J]. Journal of Big Data, 2021, 8(1): 65.
HNAMTE V, NHUNG-NGUYEN H, HUSSAIN J, et al. A novel two-stage deep learning model for network intrusion detection: LSTM-AE[J]. IEEE Access, 2023, 11: 37131-37148.
HAZMAN C, GUEZZAZ A, BENKIRANE S, et al. Enhanced IDS with deep learning for IoT-based smart cities security[J]. Tsinghua Science and Technology, 2024, 29(4): 929-947.
THAREWAL S, ASHFAQUE M W, BANU S S, et al. Intrusion detection system for industrial Internet of things based on deep reinforcement learning[J]. Wireless Communications and Mobile Computing, 2022, 2022(1): 9023719.
HE M S, WANG X J, WEI P, et al. Reinforcement learning meets network intrusion detection: a transferable and adaptable framework for anomaly behavior identification[J]. IEEE Transactions on Network and Service Management, 2024, 21(2): 2477-2492.
LI Q B, DIAO Y Q, CHEN Q, et al. Federated learning on non-IID data silos: an experimental study[C]//Proceedings of the 2022 IEEE 38th International Conference on Data Engineering (ICDE). Piscataway: IEEE Press, 2022: 965-978.
HUANG Y T, CHU L Y, ZHOU Z R, et al. Personalized cross-silo federated learning on Non-IID data[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(9): 7865-7873.
MCMAHAN H B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[J]. arXiv preprint, 2016, arXiv: 1602.05629.
POPOOLA S I, ANDE R, ADEBISI B, et al. Federated deep learning for zero-day botnet attack detection in IoT-edge devices[J]. IEEE Internet of Things Journal, 2022, 9(5): 3930-3944.
HE Z M, YIN J, WANG Y, et al. Edge device identification based on federated learning and network traffic feature engineering[J]. IEEE Transactions on Cognitive Communications and Networking, 2022, 8(4): 1898-1909.
SUMITRA, SHENOY M V. HFedDI: a novel privacy preserving horizontal federated learning based scheme for IoT device identification[J]. Journal of Network and Computer Applications, 2023, 214: 103616.
AL-NADAY M, DOBRE V, REED M, et al. Federated deep Q-learning networks for service-based anomaly detection and classification in edge-to-cloud ecosystems[J]. Annals of Telecommunications, 2024, 79(3): 165-178.
LI Z, KONG Y B, JIANG C J. A transfer double deep Q network based DDoS detection method for Internet of vehicles[J]. IEEE Transactions on Vehicular Technology, 2023, 72(4): 5317-5331.
VASWANI A. Attention is all you need[C]//Advances in Neural Information Processing Systems. [S.L.: s.n.], 2017: 5998-6008.
WU Y, HE K. Group normalization[C]//Proceedings of the European Conference on Computer Vision (ECCV). [S.L.: s.n.] 2018: 3-19.
CASELLA B, ESPOSITO R, SCIARAPPA A, et al. Experimenting with normalization layers in federated learning on Non-IID scenarios[J]. IEEE Access, 2024, 12: 47961-47971.
YAO D Z, PAN W N, DAI Y T, et al. Local-global knowledge distillation in heterogeneous federated learning with Non-IID data[J]. arXiv preprent, 2021, arXiv: 2107.00051.
NETO E C P, TASLIMASA H, DADKHAH S, et al. CICIoV2024: advancing realistic IDS approaches against DoS and spoofing attack in IoV CAN bus[J]. Internet of Things, 2024, 26: 101209.
DADKHAH S, NETO E C P, FERREIRA R, et al. CICIoMT2024: a benchmark dataset for multi-protocol security assessment in IoMT[J]. Internet of Things, 2024, 28: 101351.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构