浏览全部资源
扫码关注微信
1.曲靖师范学院信息工程学院,云南 曲靖 655011
2.云南经济管理学院教育学院,云南 昆明 650106
3.云南大学数学与统计学院,云南 昆明 650500
[ "刘曦(1987‒ ),男,博士,曲靖师范学院信息工程学院讲师,主要研究方向为云计算、边缘计算、车计算等。" ]
[ "刘俊(1963‒ ),男,云南经济管理学院教育学院教授,主要研究方向为云计算、边缘计算等。" ]
[ "吴鸿(1985‒ ),女,博士,曲靖师范学院信息工程学院讲师,主要研究方向为边缘计算、智能信息处理等。" ]
[ "李伟东(1983‒ ),男,博士,云南大学数学与统计学院教授、博士生导师,主要研究方向为组合优化、近似算法、随机算法、云计算等。" ]
纸质出版日期:2024-12-10,
收稿日期:2024-10-15,
修回日期:2024-11-29,
移动端阅览
刘曦, 刘俊, 吴鸿, 等. 车计算中基于侏儒猫鼬优化算法的资源共享分配方法[J]. 物联网学报, 2024,8(4):89-97.
LIU XI, LIU JUN, WU HONG, et al. Resource-sharing allocation method based on dwarf mongoose optimization algorithm in vehicle computing. [J]. Chinese journal on internet of things, 2024, 8(4): 89-97.
刘曦, 刘俊, 吴鸿, 等. 车计算中基于侏儒猫鼬优化算法的资源共享分配方法[J]. 物联网学报, 2024,8(4):89-97. DOI: 10.11959/j.issn.2096-3750.2024.00444.
LIU XI, LIU JUN, WU HONG, et al. Resource-sharing allocation method based on dwarf mongoose optimization algorithm in vehicle computing. [J]. Chinese journal on internet of things, 2024, 8(4): 89-97. DOI: 10.11959/j.issn.2096-3750.2024.00444.
在车计算中,拥有强大计算能力和丰富传感设备的智能车为用户提供服务,其中众多的传感设备能为用户提供不限时间、地点的服务。智能车拥有大量计算资源和传感资源,其中计算资源为单个用户独享,而传感资源能被多个用户共享。针对车计算的特点,首先设计了一种基于资源共享的资源分配新模型,提出一种基于侏儒猫鼬优化算法的资源共享分配方法。然后针对资源分配的离散问题,提出一种不可行解的修正算法。最后为了解决侏儒猫鼬优化算法易于陷入局部最优解的问题,提出一种基于随机和贪心策略结合的初始解生成算法,以提高算法收敛速度,使其能够快速得到最优分配方案。实验结果表明,所提方法在不同的分配环境下均有较好的表现,并且有较强的适应能力。
In vehicle computing
the intelligent vehicle which has strong computing capability and abundant sensing devices provides services for users. Many sensing devices can provide services for users without the limits of time and place. Intelligent vehicles have large amount computing and sensing resources
where computing resources are used individually by users while sensing resources can be shared by multiple users. According to the characteristics of intelligent vehicles
a new resource allocation model based on resource sharing was proposed. A resource sharing allocation method based on dwarf mongoose optimization was proposed. A repairing algorithm was proposed to transform infeasible solutions into feasible solutions. A new solution generation algorithm based on the random and greedy strategy was proposed to address the problem of the dwarf mongoose optimization algorithm being prone to getting stuck in local optima
to improve the convergence speed and obtain the optimal solution. The experimental results show that the proposed strategy performs well in different allocation environments and is adaptable.
车计算侏儒猫鼬优化算法资源共享资源分配
vehicle computingdwarf mongoose optimization algorithmresource sharingresource allocation
WU B F, ZHONG R, WANG Y X, et al. VPI: vehicle programming interface for vehicle computing[J]. Journal of Computer Science and Technology, 2024, 39(1): 22-44.
LIU X, LI W D. A truthful randomized mechanism for heterogeneous resource allocation with multi-minded in mobile edge computing[J]. IEEE Transactions on Network and Service Management, 2024, 21(5): 5677-5690.
刘耀, 何岳园, 周红静, 等. 移动边缘计算中基于资源联合分配的部分计算卸载方法[J]. 物联网学报, 2023, 7(1): 140-148.
LIU Y, HE Y Y, ZHOU H J, et al. Partial computation offloading method based on joint resource allocation for mobile edge computing[J]. Chinese Journal on Internet of Things, 2023, 7(1): 140-148.
AGUSHAKA J O, EZUGWU A E, ABUALIGAH L. Dwarf mongoose optimization algorithm[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 391: 114570.
YIN L X, LUO J, QIU C X, et al. Joint task offloading and resources allocation for hybrid vehicle edge computing systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(8): 10355-10368.
PENG Y, TANG X G, ZHOU Y Q, et al. Computing and communication cost-aware service migration enabled by transfer reinforcement learning for dynamic vehicular edge computing networks[J]. IEEE Transactions on Mobile Computing, 2024, 23(1): 257-269.
HU S H, QU Z H, TANG B, et al. Joint service request scheduling and container retention in serverless edge computing for vehicle-infrastructure collaboration[J]. IEEE Transactions on Mobile Computing, 2024, 23(6): 6508-6521.
MA G F, HU M J, WANG X W, et al. Joint partial offloading and resource allocation for vehicular federated learning tasks[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(8): 8444-8459.
WANG N L, PANG S C, JI X F, et al. Intelligent driving task scheduling service in vehicle-edge collaborative networks based on deep reinforcement learning[J]. IEEE Transactions on Network and Service Management, 2024, 21(4): 4357-4368.
LI S, SUN W B, NI Q, et al. Road side unit-assisted learning-based partial task offloading for vehicular edge computing system[J]. IEEE Transactions on Vehicular Technology, 2024, 73(4): 5546-5555.
TANG C G, YAN G, WU H M, et al. Computation offloading and resource allocation in failure-aware vehicular edge computing[J]. IEEE Transactions on Consumer Electronics, 2024, 70(1): 1877-1888.
LI H T, LI X J, ZHANG M Y, et al. System-wide energy efficient computation offloading in vehicular edge computing with speed adjustment[J]. IEEE Transactions on Green Communications and Networking, 2024, 8(2): 701-715.
XIAO H Z, CAI L, FENG J, et al. Resource optimization of MAB-based reputation management for data trading in vehicular edge computing[J]. IEEE Transactions on Wireless Communications, 2023, 22(8): 5278-5290.
DA COSTA J B D, DE SOUZA A M, MENEGUETTE R I, et al. Mobility and deadline-aware task scheduling mechanism for vehicular edge computing[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(10): 11345-11359.
刘曼, 方旭明. 基于改进遗传算法的多AP联合传输方案研究[J]. 物联网学报, 2023, 7(3): 62-71.
LIU M, FANG X M. Research on multi-AP joint transmission scheme based on improved genetic algorithm[J]. Chinese Journal on Internet of Things, 2023, 7(3): 62-71.
LIU X, LIU J, LI W D. A truthful double auction mechanism for resource provisioning and elastic service in vehicle computing[J]. Computer Networks, 2024, 254: 110806.
ELAZIZ M, EWEES A, AL-QANESS M, et al. Feature selection for high dimensional datasets based on quantum-based dwarf mongoose optimization[J]. Mathematics, 2022, 10(23): 4565.
AKINOLA O A, EZUGWU A E, OYELADE O N, et al. A hybrid binary dwarf mongoose optimization algorithm with simulated annealing for feature selection on high dimensional multi-class datasets[J]. Scientific Reports, 2022, 12(1): 14945.
张宁, 王勇, 张伟. 基于觅食能力分配搜索任务的侏儒猫鼬优化算法[J]. 广西民族大学学报(自然科学版), 2023, 29(3): 74-85.
ZHANG N, WANG Y, ZHANG W. The dwarf mongoose optimization algorithm based on foraging ability to allocate search tasks[J]. Journal of Guangxi Minzu University (Natural Science Edition), 2023, 29(3): 74-85.
MOUASSA S, ALATEEQ A, ALASSAF A, et al. Optimal power flow analysis with renewable energy resource uncertainty using dwarf mongoose optimizer: case of ADRAR isolated electrical network[J]. IEEE Access, 2024, 12: 10202-10218.
WANG Y D, LIANG T T, YANG J X, et al. Neuro-adaptive finite time composite fault tolerant control for attitude control systems of satellites[J]. Radio Science, 2024, 59(1): 1-29.
HAMMOURI A I, AWADALLAH M A, BRAIK M S, et al. Improved dwarf mongoose optimization algorithm for feature selection: application in software fault prediction datasets[J]. Journal of Bionic Engineering, 2024, 21(4): 2000-2033.
XU M Z, LI W D, ZHANG X J, et al. A discrete dwarf mongoose optimization algorithm to solve task assignment problems on smart farms[J]. Cluster Computing, 2024, 27(5): 6185-6204.
MALATHI S R, VIJAY K P. MULTI-head self-attention-based recurrent neural network with dwarf mongoose optimization algorithm-espoused QRS detector design[J]. Signal, Image and Video Processing, 2024, 18(5): 4935-4944.
GANJI V R, CHAPARALA A. Wave Hedges distance-based feature fusion and hybrid optimization-enabled deep learning for cyber credit card fraud detection[J]. Knowledge and Information Systems, 2024, 66(11): 7005-7030.
AYYAPPA Y, SIVA KUMAR A P. Stock market prediction with political data analysis (SP-PDA) model for handling big data[J]. Multimedia Tools and Applications, 2024, 83(34): 80583-80611.
KHATUN R, SARKAR A. Deep-KeywordNet: automated English keyword extraction in documents using deep keyword network based ranking[J]. Multimedia Tools and Applications, 2024, 83(27): 68959-68991.
NISAN N, RONEN A. Algorithmic mechanism design[J]. Games and Economic Behavior, 2001, 35(1/2): 166-196.
KELLERER H, PFERSCHY U, PISINGER D. Knapsack Problems[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004
LIU X, LIU J, LI W D. Truthful mechanism for joint resource allocation and task offloading in mobile edge computing[J]. Computer Networks, 2024, 254: 110796.
LIU X, LIU J. A truthful randomized mechanism for task allocation with multi-attributes in mobile edge computing[J]. Journal of King Saud University - Computer and Information Sciences, 2024, 36(9): 102196.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构