浏览全部资源
扫码关注微信
南京邮电大学通信与信息工程学院,江苏 南京 210003
[ "朱光照(2000‒ ),男,南京邮电大学通信与信息工程学院硕士生,主要研究方向为边缘计算、联邦学习。" ]
[ "朱晓荣(1977‒ ),女,博士,南京邮电大学通信与信息工程学院教授、博士生导师,主要研究方向为5G/6G网络、智能物联网、网络大数据、区块链、群体智能等。" ]
[ "徐鼎(1983‒ ),男,博士,南京邮电大学通信与信息工程学院副教授、硕士生导师,主要研究方向为无线网络边缘计算、无线通信非正交多址接入、无线通信物理层安全、天地一体化网络、物联网等。" ]
收稿日期:2024-01-26,
修回日期:2024-04-14,
纸质出版日期:2025-06-10
移动端阅览
朱光照,朱晓荣,徐鼎.面向无线联邦学习模型压缩的多维资源联合优化研究[J].物联网学报,2025,09(02):190-201.
ZHU Guangzhao,ZHU Xiaorong,XU Ding.Joint multi-dimensional resource optimization for model compression in wireless federated learning[J].Chinese Journal on Internet of Things,2025,09(02):190-201.
朱光照,朱晓荣,徐鼎.面向无线联邦学习模型压缩的多维资源联合优化研究[J].物联网学报,2025,09(02):190-201. DOI: 10.11959/j.issn.2096-3750.2025.00391.
ZHU Guangzhao,ZHU Xiaorong,XU Ding.Joint multi-dimensional resource optimization for model compression in wireless federated learning[J].Chinese Journal on Internet of Things,2025,09(02):190-201. DOI: 10.11959/j.issn.2096-3750.2025.00391.
针对边缘计算场景中,资源受限和网络动态的终端设备参与联邦学习产生的巨大时延和能耗问题,基于云-边-端三层联邦学习架构提出了一种高效训练和绿色节能的联邦学习算法。首先,将模型压缩技术引入三层联邦学习结构中,对三层联邦学习的模型收敛速率、训练时延和能耗进行理论分析。然后,根据理论分析结果进行问题建模,在一定的模型收敛速率下最小化全局模型训练时延和能耗,通过联合优化终端设备的发射功率、算力和模型压缩率,提高联邦学习的资源利用率。最后,将问题分解为3个优化子问题分别求解,设计了一种联合交替优化算法来获得原始问题的最优解。仿真结果表明,该算法可以适应大规模的边缘计算场景,在保证模型收敛速率的同时,与传统三层联邦学习算法相比,产生的时延和能耗分别减少了71.54%和48.76%,有效地降低了全局模型训练产生的时延和能耗。
In the edge computing scenarios
resource-constrained and particiption of the dynamically terminal devices of network in federated learning cause high latency and high energy consumption. An efficient and environmentally friendly federated learning algorithm based on a three-tier cloud-edge-terminal architecture was proposed. Firstly
by introducing model compression techniques into the three-tier federated learning structure
a theoretical analysis was conducted on the model convergence rate
training latency
and energy consumption. Subsequently
based on the theoretical analysis
a problem was formulated to minimize the global model training latency and energy consumption under a certain model convergence rate by jointly optimizing the terminal devices' transmission power
computing power
and model compression rate. Finally
by decomposing the problem into three sub-optimization problems and solving them alternately
a joint alternating optimization algorithm was designed to obtain the optimal solution for the original problem. Experimental results demonstrate that the proposed algorithm is adaptable to large-scale edge computing scenarios. It achieves reductions of 71.54% and 48.76%
respectively
in latency and energy consumption compared with traditional three-layer federated learning algorithms
while ensuring the convergence rate of the model
and effectively reduces the latency and energy consumption generated by global model training.
SHAHRAKI A , ABBASI M , PIRAN M J , et al . A comprehensive survey on 6G networks: applications, core services, enabling technologies, and future challenges [J ] . arXiv preprint , 2021 , arXiv: 2101.12475 .
栾宁 , 熊轲 , 张煜 , 等 . 6G: 典型应用、关键技术与面临挑战 [J ] . 物联网学报 , 2022 , 6 ( 1 ): 29 - 43 .
LUAN N , XIONG K , ZHANG Y , et al . 6G: typical applications, key technologies and challenges [J ] . Chinese Journal on Internet of Things , 2022 , 6 ( 1 ): 29 - 43 .
李文璟 , 喻鹏 , 张平 . 6G智能内生网络架构及关键技术分析 [J ] . 中兴通讯技术 , 2023 , 29 ( 5 ): 2 - 8 .
LI W J , YU P , ZHANG P . Analysis of the architecture and key technologies of 6G intelligent [J ] . ZTE Technology Journal , 2023 , 29 ( 5 ): 2 - 8 .
耿光磊 , 高博 , 熊轲 , 等 . 联邦学习赋能6G网络综述 [J ] . 物联网学报 , 2023 , 7 ( 2 ): 50 - 66 .
GENG G L , GAO B , XIONG K , et al . A survey of federated learning for 6G networks [J ] . Chinese Journal on Internet of Things , 2023 , 7 ( 2 ): 50 - 66 .
AL-QURAAN M , MOHJAZI L , BARIAH L , et al . Edge-native intelligence for 6G communications driven by federated learning: a survey of trends and challenges [J ] . IEEE Transactions on Emerging Topics in Computational Intelligence , 2023 , 7 ( 3 ): 957 - 979 .
XIAO Y , SHI G M , KRUNZ M . Towards ubiquitous AI in 6G with federated learning [J ] . arXiv preprint , 2020 , arXiv: 2004.13563 .
ZHU G X , LYU Z H , JIAO X , et al . Pushing AI to wireless network edge: an overview on integrated sensing, communication, and computation towards 6G [J ] . Science China Information Sciences , 2023 , 66 ( 3 ): 130301 .
刘胜利 . 无线分布式学习系统的模型优化与资源管理 [D ] . 杭州 : 浙江大学 , 2022 .
LIU S L . Model optimization and resource management of wireless distributed learning system [D ] . Hangzhou : Zhejiang University , 2022 .
BOUZINIS P S , DIAMANTOULAKIS P D , KARAGIANNIDIS G K . Wireless federated learning (WFL) for 6G Networks⁴Part I: research challenges and future trends [J ] . IEEE Communications Letters , 2022 , 26 ( 1 ): 3 - 7 .
YANG Z H , CHEN M Z , WONG K K , et al . Federated learning for 6G: applications, challenges, and opportunities [J ] . Engineering , 2022 , 8 : 33 - 41 .
MCMAHAN H B , MOORE E , RAMAGE D , et al . Communication-efficient learning of deep networks from decentralized data [J ] . arXiv preprint , 2016 , arXiv: 1602.05629 .
LI T , SAHU A K , TALWALKAR A , et al . Federated learning: challenges, methods, and future directions [J ] . IEEE Signal Processing Magazine , 2020 , 37 ( 3 ): 50 - 60 .
LIU Y , YUAN X L , XIONG Z H , et al . Federated learning for 6G communications: challenges, methods, and future directions [J ] . China Communications , 2020 , 17 ( 9 ): 105 - 118 .
QIN Z J , LI G Y , YE H . Federated learning and wireless communications [J ] . IEEE Wireless Communications , 2021 , 28 ( 5 ): 134 - 140 .
SHI W Q , ZHOU S , NIU Z S . Device scheduling with fast convergence for wireless federated learning [C ] // Proceedings of the ICC 2020 - 2020 IEEE International Conference on Communications (ICC) . Piscataway : IEEE Press , 2020 : 1 - 6 .
LI Q B , DIAO Y Q , CHEN Q , et al . Federated learning on non-IID data silos: an experimental study [C ] // Proceedings of the 2022 IEEE 38th International Conference on Data Engineering (ICDE) . Piscataway : IEEE Press , 2022 : 965 - 978 .
YAMASAKI Y , TAKASE H . F2MKD: fog-enabled federated learning with mutual knowledge distillation [C ] // Proceedings of the 2023 IEEE 20th Consumer Communications & Networking Conference (CCNC) . Piscataway : IEEE Press , 2023 : 682 - 683 .
ALISTARH D , HOEFLER T , JOHANSSON M , et al . The convergence of sparsified gradient methods [C ] // Proceedings of the 32nd International Conference on Neural Information Processing Systems . New York : Curran Associates Inc , 2018 : 5977 - 5987 .
SHI S H , WANG Q , ZHAO K Y , et al . A distributed synchronous SGD algorithm with global Top- K sparsification for low bandwidth networks [C ] // Proceedings of the 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS) . Piscataway : IEEE Press , 2019 : 2238 - 2247 .
SATTLER F , WIEDEMANN S , MULLER K R , et al . Robust and communication-efficient federated learning from non-i.i.d. data [J ] . IEEE Transactions on Neural Networks and Learning Systems , 2020 , 31 ( 9 ): 3400 - 3413 .
JIANG Z D , XU Y , XU H L , et al . Adaptive control of client selection and gradient compression for efficient federated learning [J ] . arXiv preprint , 2022 , arXiv: 2212.09483 .
XU Y , LIAO Y M , XU H L , et al . Adaptive control of local updating and model compression for efficient federated learning [J ] . IEEE Transactions on Mobile Computing , 2023 , 22 ( 10 ): 5675 - 5689 .
唐伦 , 汪智平 , 蒲昊 , 等 . 基于自适应梯度压缩的高效联邦学习通信机制研究 [J ] . 电子与信息学报 , 2023 , 45 ( 1 ): 227 - 234 .
TANG L , WANG Z P , PU H , et al . Research on efficient federated learning communication mechanism based on adaptive gradient compression [J ] . Journal of Electronics & Information Technology , 2023 , 45 ( 1 ): 227 - 234 .
LIU S L , YU G D , YIN R , et al . Communication and computation efficient federated learning for Internet of vehicles with a constrained latency [J ] . IEEE Transactions on Vehicular Technology , 2024 , 73 ( 1 ): 1038 - 1052 .
MO X P , XU J . Energy-efficient federated edge learning with joint communication and computation design [J ] . Journal of Communications and Information Networks , 2021 , 6 ( 2 ): 110 - 124 .
TRAN N H , BAO W , ZOMAYA A , et al . Federated learning over wireless networks: optimization model design and analysis [C ] // Proceedings of the IEEE INFOCOM 2019 - IEEE Conference on Computer Communications . Piscataway : IEEE Press , 2019 : 1387 - 1395 .
LI P C , CHENG G L , HUANG X M , et al . Snowball: energy efficient and accurate federated learning with coarse-to-fine compression over heterogeneous wireless edge devices [J ] . IEEE Transactions on Wireless Communications , 2023 , 22 ( 10 ): 6778 - 6792 .
HONG W , LUO X T , ZHAO Z Y , et al . Optimal design of hybrid federated and centralized learning in the mobile edge computing systems [C ] // Proceedings of the 2021 IEEE International Conference on Communications Workshops (ICC Workshops) . Piscataway : IEEE Press , 2021 : 1 - 6 .
LIU L M , ZHANG J , SONG S H , et al . Client-edge-cloud hierarchical federated learning [C ] // Proceedings of the ICC 2020 - 2020 IEEE International Conference on Communications (ICC) . Piscataway : IEEE Press , 2020 : 1 - 6 .
SHI S H , ZHAO K Y , WANG Q , et al . A convergence analysis of distributed SGD with communication-efficient gradient sparsification [C ] // Proceedings of the 28th International Joint Conference on Artificial Intelligence . Menlo Park : AAAI Press , 2019 : 3411 - 3417 .
LIU S L , YU G D , CHEN X F , et al . Joint user association and resource allocation for wireless hierarchical federated learning with Non-IID data [C ] // Proceedings of ICC 2022 - IEEE International Conference on Communications . Piscataway : IEEE Press , 2022 : 74 - 79 .
PAN Y J , CHEN M , YANG Z H , et al . Energy-efficient NOMA-based mobile edge computing offloading [J ] . IEEE Communications Letters , 2019 , 23 ( 2 ): 310 - 313 .
TUN Y K , PARK Y M , TRAN N H , et al . Energy-efficient resource management in UAV-assisted mobile edge computing [J ] . IEEE Communications Letters , 2021 , 25 ( 1 ): 249 - 253 .
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构