
浏览全部资源
扫码关注微信
1.中国地质大学(武汉)机械与电子信息学院,湖北 武汉 430074
2.琶洲实验室(黄埔),广东 广州 510335
3.华中科技大学电子信息与通信学院,湖北 武汉 430074
4.鹏城实验室,广东 深圳 518055
5.西安电子科技大学人工智能学院,陕西 西安 710071
6.电子信息对抗与仿真技术教育部重点实验室,陕西 西安 710071
7.湖北华中电力科技开发有限责任公司,湖北 武汉 430074
[ "李莹玉(1991‒ ),女,博士,中国地质大学(武汉)机械与电子信息学院副教授,主要研究方向为网络人工智能、边缘计算、分布式优化理论等。" ]
[ "戴一鹏(1999‒ ),男,中国地质大学(武汉)机械与电子信息学院硕士生,主要研究方向为边缘计算、分布式资源优化等。" ]
[ "葛晓虎(1972‒ ),男,博士,华中科技大学电子信息与通信学院教授,主要研究方向为移动通信、无线网络中的流量建模、绿色通信等。" ]
[ "石光明(1965‒ ),男,博士,鹏城实验室副主任、西安电子科技大学人工智能学院教授,主要研究方向为语义通信、类脑感知、计算成像等。" ]
[ "肖泳(1980‒ ),男,博士,华中科技大学电子信息与通信学院教授,主要研究方向为网络人工智能、边缘计算、通信网络博弈理论等。" ]
[ "刘焱(1983‒ ),男,湖北华中电力科技开发有限责任公司高级工程师,主要研究方向为大数据与智能电网、电力系统及其自动化等。" ]
[ "俞亮(1982‒ ),男,湖北华中电力科技开发有限责任公司高级工程师,主要研究方向为智能运维、数据库、信息通信技术等。" ]
[ "许瀚(1977‒ ),男,湖北华中电力科技开发有限责任公司工程师,主要研究方向为智能运维与云计算。" ]
收稿日期:2023-01-10,
修回日期:2024-11-12,
纸质出版日期:2025-03-30
移动端阅览
李莹玉,戴一鹏,葛晓虎等.面向时间敏感工业互联网的碳排放建模与优化[J].物联网学报,2025,09(01):103-114.
LI Yingyu,DAI Yipeng,GE Xiaohu,et al.Towards carbon emission modeling and optimization for time-sensitive IIoT[J].Chinese Journal on Internet of Things,2025,09(01):103-114.
李莹玉,戴一鹏,葛晓虎等.面向时间敏感工业互联网的碳排放建模与优化[J].物联网学报,2025,09(01):103-114. DOI: 10.11959/j.issn.2096-3750.2025.00419.
LI Yingyu,DAI Yipeng,GE Xiaohu,et al.Towards carbon emission modeling and optimization for time-sensitive IIoT[J].Chinese Journal on Internet of Things,2025,09(01):103-114. DOI: 10.11959/j.issn.2096-3750.2025.00419.
边缘计算和云计算中心的大规模部署,为实现绿色低碳的工业互联网(IIoT
industrial Internet of things)带来了机遇与挑战。针对时间敏感型工业互联网业务,提出了一种基于云边协同的碳排放量优化方法。首先,对云边协同架构下工业互联网中时间敏感型业务的碳排放进行了深入分析,并建立了包含云计算中心、边缘节点和骨干网数据传输的综合碳排放模型。在此基础上,考虑低时延约束,设计了一种基于交替方向乘子法(ADMM
alternative direction method of multipliers)的任务卸载优化算法,旨在最小化工业互联网的整体碳排放。为了验证所提方法的有效性,利用美国不同地区的真实碳强度数据,进行了仿真实验。仿真实验结果表明,该方法能够在保证业务低时延的前提下,显著地降低工业互联网的碳排放量,实现云边协同的优势互补。
The large-scale deployment of edge computing and cloud computing infrastructures has brought both opportunities and challenges to the realization of the green and low-carbon industrial Internet of things (IIoT). Aiming at time-sensitive IIoT services
a carbon emission optimization method based on cloud-edge collaboration was proposed. Firstly
an in-depth analysis was conducted upon the carbon emissions of time-sensitive services in IIoT under a cloud-edge collaborative framework
and a comprehensive carbon emission model including cloud computing centers
edge nodes
and backbone network data transmission was established. Based on this
considering low-latency constraints
a task offloading optimization algorithm based on the alternative direction method of multipliers (ADMM) was designed to minimize the overall carbon emissions of the considered IIoT system. To verify the effectiveness of the proposed method
extensive numerical experiments were conducted using real carbon intensity data from different regions of the United States. The results show that the proposed method can significantly reduce the carbon emissions of the considered IIoT system while guaranteeing low latency for services
and realizing the complementary advantages of cloud-edge collaboration.
SISINNI E , SAIFULLAH A , HAN S , et al . Industrial Internet of things: challenges, opportunities, and directions [J ] . IEEE Transactions on Industrial Informatics , 2018 , 14 ( 11 ): 4724 - 4734 .
ESPINEL SARMIENTO D , LEBRE A , NUSSBAUM L , et al . Decentralized SDN control plane for a distributed cloud-edge infrastructure: a survey [J ] . IEEE Communications Surveys & Tutorials , 2021 , 23 ( 1 ): 256 - 281 .
FINN N . Introduction to time-sensitive networking [J ] . IEEE Communications Standards Magazine , 2018 , 2 ( 2 ): 22 - 28 .
PARK J , SAMARAKOON S , SHIRI H , et al . Extreme URLLC: vision, challenges, and key enablers [J ] . arXiv preprint , 2020 , arXiv: 2001.09683 .
FIZZA K , BANERJEE A , MITRA K , et al . QoE in IoT: a vision, survey and future directions [J ] . Discover Internet of Things , 2021 , 1 ( 1 ): 4 .
XIAO Y , SHI G M , LI Y Y , et al . Toward self-learning edge intelligence in 6G [J ] . IEEE Communications Magazine , 2020 , 58 ( 12 ): 34 - 40 .
YANG Y , MA M L , WU H Q , et al . 6G network AI architecture for everyone-centric customized services [J ] . IEEE Network , 2023 , 37 ( 5 ): 71 - 80 .
MAO G Q . 5G green mobile communication networks [J ] . China Communications , 2017 , 14 ( 2 ): 183 - 184 .
XIAO Y , NIYATO D , HAN Z , et al . Dynamic energy trading for energy harvesting communication networks: a stochastic energy trading game [J ] . IEEE Journal on Selected Areas in Communications , 2015 , 33 ( 12 ): 2718 - 2734 .
XIAO Y , NIYATO D , WANG P , et al . Dynamic energy trading for wireless powered communication networks [J ] . IEEE Communications Magazine , 2016 , 54 ( 11 ): 158 - 164 .
XIAO Y , KRUNZ M . Dynamic network slicing for scalable fog computing systems with energy harvesting [J ] . IEEE Journal on Selected Areas in Communications , 2018 , 36 ( 12 ): 2640 - 2654 .
ARORA N K , MISHRA I . United nations sustainable development goals 2030 and environmental sustainability: race against time [J ] . Environmental Sustainability , 2019 , 2 ( 4 ): 339 - 342 .
XIAO Y , KRUNZ M . Distributed optimization for energy-efficient fog computing in the tactile Internet [J ] . IEEE Journal on Selected Areas in Communications , 2018 , 36 ( 11 ): 2390 - 2400
MARINELLO J C , ABRÃO T , AMIRI A , et al . Antenna selection for improving energy efficiency in XL-MIMO systems [J ] . IEEE Transactions on Vehicular Technology , 2020 , 69 ( 11 ): 13305 - 13318 .
KOLIOS P , FRIDERIKOS V , PAPADAKI K , et al . Store carry and forward relay aided cellular networks [C ] // Proceedings of the Seventh ACM International Workshop on VehiculAr InterNETworking . New York : ACM Press , 2010 : 71 - 72 .
KAR B , YAHYA W , LIN Y D , et al . Offloading using traditional optimization and machine learning in federated cloud-edge-fog systems: a survey [J ] . IEEE Communications Surveys & Tutorials , 2023 , 25 ( 2 ): 1199 - 1226 .
XIAO Y , ZHANG X H , LI Y Y , et al . Time-sensitive learning for heterogeneous federated edge intelligence [J ] . IEEE Transactions on Mobile Computing , 2024 , 23 ( 2 ): 1382 - 1400 .
PATTERSON D A , GONZALEZ J E , LE Q V , et al . Carbon emissions and large neural network training .[J ] . arXiv preprint , 2021 , arXiv: 2104.10350 .
KELLER M , KARL H , KELLER M , et al . Response time-optimized distributed cloud resource allocation [C ] // Proceedings of the 2014 ACM SIGCOMM Workshop on Distributed Cloud Computing . New York : ACM Press , 2014 : 47 - 52 .
XIAO Y , KRUNZ M . QoE and power efficiency tradeoff for fog computing networks with fog node cooperation [C ] // Proceedings of the IEEE INFOCOM 2017 - IEEE Conference on Computer Communications . Piscataway : IEEE Press , 2017 : 1 - 9 .
XIAO Y , KRUNZ M . Distributed optimization for energy-efficient fog computing in the tactile Internet [J ] . IEEE Journal on Selected Areas in Communications , 2018 , 36 ( 11 ): 2390 - 2400
XIN C Q , PARCOLLET T , BEUTEL Daniel J , et al . A first look into the carbon footprint of federated learning [J ] . The Journal of Machine Learning Research , 2023 , 24 ( 1 ): 5899 - 5921 .
BELOGLAZOV A , BUYYA R , LEE Y C , et al . A taxonomy and survey of energy-efficient data centers and cloud computing systems [M ] // Advances in Computers . Amsterdam : Elsevier , 2011 : 47 - 111 .
SHUJA J , BILAL K , MADANI S A , et al . Survey of techniques and architectures for designing energy-efficient data centers [J ] . IEEE Systems Journal , 2016 , 10 ( 2 ): 507 - 519 .
史彦军 , 韩俏梅 , 沈卫明 , 等 . 5G车联网下工业园区的多层协同框架技术研究 [J ] . 工程(英文) , 2021 , 7 ( 6 ): 251 - 281 .
SHI Y J , HAN Q M , SHEN W M , et al . A multi-laver collaboration framework for industrial parks with 5G vehicle-to-everything networks [J ] . Engineering , 2021 , 7 ( 6 ): 251 - 281 .
ANDRAE A . New perspectives on Internet electricity use in 2030 [J ] . Engineering and Applied Science Letters , 2020 , 3 ( 2 ): 19 - 31 .
WANG Q , XIAO Y , ZHU H X , et al . Towards energy-efficient federated edge intelligence for IoT networks [C ] // Proceedings of the 2021 IEEE 41st International Conference on Distributed Computing Systems Workshops (ICDCSW) . Piscataway : IEEE Press , 2021 : 55 - 62 .
XIAO Y , LI Y Y , SHI G M , et al . Optimizing resource-efficiency for federated edge intelligence in IoT networks [C ] // Proceedings of the 2020 International Conference on Wireless Communications and Signal Processing (WCSP) . Piscataway : IEEE Press , 2020 : 86 - 92 .
GUO H , LIU J . Collaborative computation offloading for multiaccess edge computing over fiber-wireless networks [J ] . IEEE Transactions on Vehicular Technology , 2018 , 67 ( 5 ): 4514 - 4526 .
RUI L , YANG S , CHEN S , et al . Smart network maintenance in an edge cloud computing environment: an adaptive model compression algorithm based on model pruning and model clustering [J ] . IEEE Transactions on Network and Service Management , 2022 : 4165 - 4175 .
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621