浏览全部资源
扫码关注微信
1.南京工程学院通信与人工智能学院、集成电路学院,江苏 南京 211167
2.南京工程学院数理学院,江苏 南京 211167
[ "耿鹏(1979‒ ),男,南京工程学院通信与人工智能学、集成电路学院院副教授,主要研究方向为智能物联网技术、无线传感器网络、复杂网络等。" ]
[ "柳艳(1980‒ ),女,南京工程学院数理学院副教授,主要研究方向为智能物联网技术、复杂网络等。" ]
[ "朱宇航(2001‒ ),男,南京工程学院通信与人工智能学院、集成电路学院在读,主要研究方向为智能物联网技术、算法优化技术。" ]
收稿日期:2024-07-05,
修回日期:2024-09-13,
纸质出版日期:2025-06-10
移动端阅览
耿鹏,柳艳,朱宇航.融合K-Means与变异RODDPSO的公共充电站优化选址[J].物联网学报,2025,09(02):202-213.
GENG Peng,LIU Yan,ZHU Yuhang.Optimization of public charging station site selection by integrating K-Means and variation RODDPSO[J].Chinese Journal on Internet of Things,2025,09(02):202-213.
耿鹏,柳艳,朱宇航.融合K-Means与变异RODDPSO的公共充电站优化选址[J].物联网学报,2025,09(02):202-213. DOI: 10.11959/j.issn.2096-3750.2025.00423.
GENG Peng,LIU Yan,ZHU Yuhang.Optimization of public charging station site selection by integrating K-Means and variation RODDPSO[J].Chinese Journal on Internet of Things,2025,09(02):202-213. DOI: 10.11959/j.issn.2096-3750.2025.00423.
为优化电动汽车公共充电站的选址问题,以
K
-均值(
K
-Means
k
-means clustering algorithm)和随机分布式延迟粒子群优化(RODDPSO
randomly occurring distributedly delayed particle swarm optimization)算法为基础,根据电动汽车充电需求,提出了一种融合
K
-Means与变异随机分布式延迟粒子群优化(VRODDPSO
variation randomly occurring distributedly delayed particle swarm optimization)算法的电动汽车充电站选址优化方法,以确定最佳的充电站位置。首先,改进了RODDPSO算法,增加了自适应变异。其次,引入VRODDPSO算法对
K
-Means的聚类中心位置进行优化,使用聚类完成后各个区域的聚类中心点作为充电站的最佳选址。相比仅使用
K
-Means算法进行3次聚类,改进后的聚类模型能够有效地解决
K
-Means算法中不恰当的初始聚类中心点可能导致算法陷入局部最小值、产生不理想的聚类的问题。最后,在南京市公共充电站优化选址的实证研究中,提出了一种新的衡量方法,能够根据现实充电站的综合利用率来评价不同算法下充电站的选址优劣。分析结果证实了使用
K
-Means与VRODDPSO算法融合的方法能够有效地优化聚类后的聚类中心位置,即充电桩和充电站的选址。
To optimize the siting of public charging stations for electric vehicles
a method based on the
k
-means clustering algorithm (
K
-Means) and randomly occurring distributedly delayed particle swarm optimization (RODDPSO) algorithm was proposed. By integrating
K
-Means with a variation randomly occurring distributedly delayed particle swarm optimization (VRODDPSO) algorit
hm
the approach could determine the optimal locations for charging stations according to the charging demands of electric vehicles. Firstly
the RODDPSO algorithm was enhanced by incorporating an adaptive variation strategy. Then
the VRODDPSO algorithm was used to optimize the positions of the
K
-Means clustering centers. After clustering
the center points of each region were considered as the optimal locations for charging stations. Compared with using the
K
-Means algorithm alone for three iterations
the improved clustering model effectively addressed the issue of the
K
-Means algorithm potentially falling into local minima due to inappropriate initial cluster centers
which could result in suboptimal clustering. Finally
in an empirical study on the optimization of public charging station locations in Nanjing
a new evaluation method was proposed. This method assessed the siting quality of charging stations based on their comprehensive utilization rates. The analysis confirms that the integrated
K
-Means and VRODDPSO algorithm effectively optimizes the positions of the clustered centers
i.e.
the locations of charging piles and stations.
王震坡 , 张瑾 , 刘鹏 , 等 . 电动汽车充电站规划研究综述 [J ] . 中国公路学报 , 2022 , 35 ( 12 ): 230 - 252 .
WANG Z P , ZHANG J , LIU P , et al . Overview of planning of electric vehicle charging stations [J ] . China Journal of Highway and Transport , 2022 , 35 ( 12 ): 230 - 252 .
张文会 , 苏嘉祺 , 哈字洪 , 等 . 电池交换式纯电动公交充电站选址定容模型 [J ] . 华南理工大学学报(自然科学版) , 2023 , 51 ( 10 ): 126 - 134 .
ZHANG W H , SU J Q , HA Z H , et al . Location and capacity optimization model of battery-swapped electric bus charging station [J ] . Journal of South China University of Technology (Natural Science Edition) , 2023 , 51 ( 10 ): 126 - 134 .
LIU W B , WANG Z D , LIU X H , et al . A novel particle swarm optimization approach for patient clustering from emergency departments [J ] . IEEE Transactions on Evolutionary Computation , 2019 , 23 ( 4 ): 632 - 644 .
侯慧 , 唐俊一 , 王逸凡 , 等 . 城区电动汽车充电站布局规划研究 [J ] . 电力系统保护与控制 , 2022 , 50 ( 14 ): 181 - 187 .
HOU H , TANG J Y , WANG Y F , et al . Layout planning of electric vehicle charging stations in urban areas [J ] . Power System Protection and Control , 2022 , 50 ( 14 ): 181 - 187 .
任峰 , 向月 , 雷小林 , 等 . 基于GPS数据的电动出租车充电桩选址定容 [J ] . 电力自动化设备 , 2022 , 42 ( 10 ): 273 - 279 .
REN F , XIANG Y , LEI X L , et al . Location and capacity determination of electric taxi charging pile based on GPS data [J ] . Electric Power Automation Equipment , 2022 , 42 ( 10 ): 273 - 279 .
张艺涵 , 徐菁 , 李秋燕 , 等 . 基于密度峰值聚类的电动汽车充电站选址定容方法 [J ] . 电力系统保护与控制 , 2021 , 49 ( 5 ): 132 - 139 .
ZHANG Y H , XU J , LI Q Y , et al . An electric vehicle charging station siting and sizing method based on a density peaks clustering algorithm [J ] . Power System Protection and Control , 2021 , 49 ( 5 ): 132 - 139 .
马丽叶 , 王海锋 , 卢志刚 , 等 . 计及故障率影响含电动汽车的分布式电源选址定容双层协调规划 [J ] . 电网技术 , 2021 , 45 ( 12 ): 4749 - 4760 .
MA L Y , WANG H F , LU Z G , et al . Double-layer coordinated planning for location and capacity of distributed power supply with electric vehicles considering failure rate [J ] . Power System Technology , 2021 , 45 ( 12 ): 4749 - 4760 .
严干贵 , 刘华南 , 韩凝晖 , 等 . 计及电动汽车时空分布状态的充电站选址定容优化方法 [J ] . 中国电机工程学报 , 2021 , 41 ( 18 ): 6271 - 6284 .
YAN G G , LIU H N , HAN N H , et al . An optimization method for location and capacity determination of charging stations considering spatial and temporal distribution of electric vehicles [J ] . Proceedings of the CSEE , 2021 , 41 ( 18 ): 6271 - 6284 .
罗清玉 , 田万利 , 贾洪飞 . 考虑通勤需求的电动汽车充电站选址与定容模型 [J ] . 吉林大学学报(工学版) , 2019 , 49 ( 5 ): 1471 - 1477 .
LUO Q Y , TIAN W L , JIA H F . Location and capacity model of electric vehicle charging station considering commuting demand [J ] . Journal of Jilin University (Engineering and Technology Edition) , 2019 , 49 ( 5 ): 1471 - 1477 .
XIONG Y H , AN B , KRAUS S . Electric vehicle charging strategy study and the application on charging station placement [J ] . Autonomous Agents and Multi-Agent Systems , 2020 , 35 ( 1 ): 3 .
AHMAD F , ASHRAF I , IQBAL A , et al . Electric vehicle fast charging station location and capacity planning model using butterfly optimization algorithm [C ] // Proceedings of the 2023 International Conference on Recent Advances in Electrical , Electronics & Digital Healthcare Technologies (REEDCON) . Piscataway : IEEE Press , 2023 : 145 - 150 .
JIN D , ZHANG H Y , HAN B , et al . Optimal siting and sizing of electric vehicle energy supplement infrastructure in highway networks [J ] . Inventions , 2023 , 8 ( 5 ): 117 .
SHI T Y , SHEN J . Locating and sizing planning of electric vehicle battery-swapping stations considering user path selection [J ] . Journal of Physics: Conference Series , 2023 , 2479 ( 1 ): 012001 .
BAE S , JANG I , GROS S , et al . A game approach for charging station placement based on user preferences and crowdedness [J ] . IEEE Transactions on Intelligent Transportation Systems , 2022 , 23 ( 4 ): 3654 - 3669 .
WANG C F , SUN Y Y , DONG L . A locating method of EV fast charging stations based on the conditional generative adversarial networks [C ] // Proceedings of the 2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia) . Piscataway : IEEE Press , 2019 : 3199 - 3204 .
CHEN S M , LI J D , LI L F . Research on the method for optimal location of charging stations based on the spatial and temporal characteristics of electric vehicle charging demand [C ] // Proceedings of the 2022 IEEE Sustainable Power and Energy Conference (iSPEC) . Piscataway : IEEE Press , 2022 : 1 - 5 .
ASNA M , SHAREEF H , PRASANTHI A . Planning of fast charging stations with consideration of EV user, distribution network and station operation [J ] . Energy Reports , 2023 , 9 : 455 - 462 .
FAN Y H , HE C H , FEI D X , et al . Electric bus charging station’s location and capacity based on routes and grid AP clustering algorithm [C ] // Proceedings of the 2020 Asia-Pacific International Symposium on Advanced Reliability and Maintenance Modeling (APARM) . Piscataway : IEEE Press , 2020 : 1 - 6 .
AHMAD F , IQBAL A , ASHRAF I , et al . Placement of electric vehicle fast charging stations in distribution network considering power loss, land cost, and electric vehicle population [J ] . Energy Sources, Part A: Recovery, Utilization, and Environmental Effects , 2022 , 44 ( 1 ): 1693 - 1709 .
SHARMA S , KAUR D , SAXENA N K . Investigation for size and location of electric vehicle charging station accompanying VRP index and commissioning cost [J ] . International Journal of Emerging Electric Power Systems , 2024 , 25 ( 1 ): 45 - 59 .
LUO S , CHU D M , LI Q D , et al . Inverse kinematics solution of 6-DOF manipulator based on multi-objective full-parameter optimization PSO algorithm [J ] . Frontiers in Neurorobotics , 2022 , 16 : 791796 .
SINGH N , CHAKRABARTI T , CHAKRABARTI P , et al . A new PSO technique used for the optimization of multiobjective economic emission dispatch [J ] . Electronics , 2023 , 12 ( 13 ): 2960 .
易晓园 . 基于PSO-RF的FRP筋与混凝土间粘结强度预测模型 [J ] . 复合材料科学与工程 , 2024 , 2 ( 4 ): 1 - 8 .
YI X Y . Prediction model of bond strength between FRP bars and concrete based on PSO-RF neural network [J ] . Composites Science and Engineering , 2024 , 2 ( 4 ): 1 - 8 .
RENE E A , TOUNSI FOKUI W S , NEMBOU KOUONCHIE P K . Optimal allocation of plug-in electric vehicle charging stations in the distribution network with distributed generation [J ] . Green Energy and Intelligent Transportation , 2023 , 2 ( 3 ): 100094 .
ZANGANEH M , MOGHADDAM M S , AZARFAR A , et al . Multi-area distribution grids optimization using D-FACTS devices by M-PSO algorithm [J ] . Energy Reports , 2023 , 9 : 133 - 147 .
SUN J L , CHE Y B , YANG T , et al . Location and capacity determination method of electric vehicle charging station based on simulated annealing immune particle swarm optimization [J ] . Energy Engineering , 2023 , 120 ( 2 ): 367 - 384 .
SONG B Y , WANG Z D , ZOU L . On global smooth path planning for mobile robots using a novel multimodal delayed PSO algorithm [J ] . Cognitive Computation , 2017 , 9 ( 1 ): 5 - 17 .
ZENG N Y , WANG Z D , ZHANG H , et al . A novel switching delayed PSO algorithm for estimating unknown parameters of lateral flow immunoassay [J ] . Cognitive Computation , 2016 , 8 ( 2 ): 143 - 152 .
TEHSIN S , REHMAN S , SAEED M O B , et al . Self-organizing hierarchical particle swarm optimization of correlation filters for object recognition [J ] . IEEE Access , 2017 , 5 : 24495 - 24502 .
WANG Y , CAO Y H , YEO T S , et al . Joint sequence optimization-based OFDM waveform design for integrated radar and communication systems [J ] . IEEE Transactions on Vehicular Technology , 2022 , 71 ( 12 ): 12734 - 12748 .
YU Z H , HUAI R T , LI H Y . CPSO-based parameter-identification method for the fractional-order modeling of lithium-ion batteries [J ] . IEEE Transactions on Power Electronics , 2021 , 36 ( 10 ): 11109 - 11123 .
ZHENG W , ZHAO C C , ZHANG G G , et al . Multi-birth optimization based on ergodic multi-scale cooperative mutation self-adaptive escape PSO for transformer fault diagnosis and location [C ] // Proceedings of the 2023 5th Asia Energy and Electrical Engineering Symposium (AEEES) . Piscataway : IEEE Press , 2023 : 644 - 652 .
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构