浏览全部资源
扫码关注微信
西安电子科技大学通信工程学院,陕西 西安 710071
[ "渠瑞芸(1999‒ ),女,西安电子科技大学通信工程学院硕士生,主要研究方向为新一代移动通信、物联网技术等。" ]
[ "刘祖军(1976‒ ),男,西安电子科技大学通信工程学院教授、博士生导师,主要研究方向为新一代移动通信、物联网技术、智能通信信号处理等。" ]
[ "黄蓓蕾(1998‒ ),女,西安电子科技大学通信工程学院博士生,主要研究方向为新一代移动通信、物联网技术等。" ]
收稿日期:2024-11-06,
修回日期:2025-05-22,
纸质出版日期:2025-06-10
移动端阅览
渠瑞芸,刘祖军,黄蓓蕾.频偏下基于张量分解的联合设备活跃性检测和信道估计[J].物联网学报,2025,09(02):152-160.
QU Ruiyun,LIU Zujun,HUANG Beilei.Tensor decomposition based-joint active device detection and channel estimation under frequency offset[J].Chinese Journal on Internet of Things,2025,09(02):152-160.
渠瑞芸,刘祖军,黄蓓蕾.频偏下基于张量分解的联合设备活跃性检测和信道估计[J].物联网学报,2025,09(02):152-160. DOI: 10.11959/j.issn.2096-3750.2025.00424.
QU Ruiyun,LIU Zujun,HUANG Beilei.Tensor decomposition based-joint active device detection and channel estimation under frequency offset[J].Chinese Journal on Internet of Things,2025,09(02):152-160. DOI: 10.11959/j.issn.2096-3750.2025.00424.
在未来无线蜂窝网络中,支持物联网(IoT
Internet of things)和机器类通信(MTC
machine type communication)的大规模接入成为关键性任务。为减少设备在接入时产生的碰撞和信令开销,研究人员提出了免授权随机接入(GF-RA
grant-free random access)方案。在GF-RA中,核心任务是联合设备活跃性检测和信道估计(JADCE
joint active device detection and channel estimation)。在实际场景中,低成本的IoT设备通常会使用廉价的晶体振荡器来降低生产成本,产生的频率偏移严重影响了检测性能。而设备的零星活动模式使该联合检测问题可建模为一个大规模稀疏性约束问题。为避免频偏与信道的非线性耦合引入非凸性,首先,利用张量分解将接收信号从前导序列、信道和频偏的三维张量的角度进行建模,随后,利用交替最小二乘(ALS
alternate least square)方法对分解的子问题进行并行求解,可同时获得设备活跃性、信道响应和频偏的估计值。同时,为使子问题变得严格凸,采用近端最小化(PM
proximal minimization)方法加入正则化约束,提高算法的收敛性和稳定性。最后,从天线数和前导序列长度两方面对所提算法的检测性能进行评估。仿真结果表明,该算法在给定的天线数量和前导序列长度变化范围内,漏检概率检测性能接近1.0×10
-3
,信道估计归一化均方误差(NMSE
normalized mean square error)接近1.0×10
-6
。与现有频偏下设备活跃性检测和信道估计的算法对比,该算法在检测性能上有明显提升。
In the future wireless cellular networks
the massive access supporting of the Internet of things (IoT) and machine type communication (MTC) has gradually become a pivotal requirement. To reduce collisions and signaling overhead generated by devices during access
grant-free random access (GF-RA) method has been proposed. In GF-RA
the critical task is the joint active device detection and channel estimation (JADCE). However
in practical scenarios
low-cost IoT devices are usually equipped with inexpensive crystal oscillators to reduce costs
thus the frequency offsets are inevitable and seriously degrade the JADCE performance. The sporadic activity pattern of the devices enables the JADCE to be formulated as a large-scale sparsity constraint problem. In order to avoid the non-convexity introduced by the nonlinear between the frequency offsets and the channels
firstly
tensor decomposition was used to model the received signal fro
m the perspective of the preamble sequence
channel
and frequency offset. Then
the alternating least square (ALS) method was exploited to solve the decomposed subproblems in parallel
and the estimated values of device activities
channel response and frequency offsets could be obtained simultaneously. Moreover
in order to make the subproblem strictly convex
the proximal minimization (PM) method was used to add the regularization constraints
which improved the convergence and stability of the proposed JADCE algorithm. Finally
the detection performance of the proposed algorithm was evaluated based on the number of antennas and the length of the preamble sequence. The simulation results show that the proposed JADCE algorithm achieves a missed detection probability close to 1.0×10
-3
within the given range of antenna numbers and the preamble sequence length variation
and approaches the normalized mean square error (NMSE) of channel estimation to 1.0×10
-6
. Compared with the existing algorithms under the frequency offsets
the proposed algorithm has a significant improvement in detection performance.
WANG C X , YOU X H , GAO X Q , et al . On the road to 6G: visions, requirements, key technologies, and testbeds [J ] . IEEE Communications Surveys & Tutorials , 2023 , 25 ( 2 ): 905 - 974 .
YU B Q , CAI Y M . Age of information in grant-free random access with massive MIMO [J ] . IEEE Wireless Communications Letters , 2021 , 10 ( 7 ): 1429 - 1433 .
YOUN J , PARK J , KIM S , et al . A study of random access for massive machine-type communications: limitations and solutions [C ] // Proceedings of the 2021 IEEE Region 10 Symposium (TENSYMP) . Piscataway : IEEE Press , 2021 : 1 - 4 .
范平志 , 李里 , 陈欢 , 等 . 面向大规模物联网的随机接入: 现状、挑战与机遇 [J ] . 通信学报 , 2021 , 42 ( 4 ): 1 - 21 .
FAN P Z , LI L , CHEN H , et al . Random access for massive Internet of things: current status, challenges and opportunities [J ] . Journal on Communications , 2021 , 42 ( 4 ): 1 - 21 .
景少雄 , 袁悦 , 熊家炜 , 等 . 一种基于随机接入时机动态分配的接入方案 [J ] . 物联网学报 , 2022 , 6 ( 2 ): 88 - 94 .
JING S X , YUAN Y , XIONG J W , et al . An access scheme based on the random access occasion dynamic allocation [J ] . Chinese Journal on Internet of Things , 2022 , 6 ( 2 ): 88 - 94 .
SHOAEI A D , NGUYEN D T , LE-NGOC T . A reconfigurable access scheme for massive-MIMO MTC networks [J ] . IEEE Access , 2021 , 9 : 65547 - 65559 .
田飞燕 , 陈晓明 , 钟财军 , 等 . 6G蜂窝物联网的大规模接入技术 [J ] . 物联网学报 , 2020 , 4 ( 1 ): 92 - 103 .
TIAN F Y , CHEN X M , ZHONG C J , et al . Massive access technology in 6G cellular Internet of things network [J ] . Chinese Journal on Internet of Things , 2020 , 4 ( 1 ): 92 - 103 .
CHEN Z L , SOHRABI F , YU W . Sparse activity detection for massive connectivity [J ] . IEEE Transactions on Signal Processing , 2018 , 66 ( 7 ): 1890 - 1904 .
HUANG J H , ZHANG H , HUANG C , et al . Compressed random access for noncoherent massive machine-type communications with energy modulation [J ] . IEEE Transactions on Wireless Communications , 2022 , 21 ( 7 ): 5175 - 5190 .
CHEN X M , NG D W K , YU W , et al . Massive access for 5G and beyond [J ] . IEEE Journal on Selected Areas in Communications , 2021 , 39 ( 3 ): 615 - 637 .
王茜竹 , 方冬 , 吴广富 . 基于改进稀疏度自适应匹配算法的免授权非正交多址接入上行传输多用户检测 [J ] . 电子与信息学报 , 2020 , 42 ( 9 ): 2216 - 2222 .
WANG Q Z , FANG D , WU G F . Multi-user detection based on sparsity adaptive matching pursuit compressive sensing for uplink grant-free non-orthogonal multiple access [J ] . Journal of Electronics & Information Technology , 2020 , 42 ( 9 ): 2216 - 2222 .
SAHOO S K , MAKUR A . Signal recovery from random measurements via extended orthogonal matching pursuit [J ] . IEEE Transactions on Signal Processing , 2015 , 63 ( 10 ): 2572 - 2581 .
ZHOU Y , ZENG F Z , GU Y C . A gradient descent sparse adaptive matching pursuit algorithm based on compressive sensing [C ] // Proceedings of the 2016 International Conference on Machine Learning and Cybernetics (ICMLC) . Piscataway : IEEE Press , 2016 : 464 - 469 .
CHEN S S , DONOHO D L , SAUNDERS M A . Atomic decomposition by basis pursuit [J ] . SIAM Journal on Scientific Computing , 1998 , 20 ( 1 ): 33 - 61 .
LIU L , YU W . Massive connectivity with massive MIMO: part I: device activity detection and channel estimation [J ] . IEEE Transactions on Signal Processing , 2018 , 66 ( 11 ): 2933 - 2946 .
LIU L , YU W . Massive connectivity with massive MIMO: part Ⅱ: achievable rate characterization [J ] . IEEE Transactions on Signal Processing , 2018 , 66 ( 11 ): 2947 - 2959 .
FENGLER A , HAGHIGHATSHOAR S , JUNG P , et al . Non-Bayesian activity detection, large-scale fading coefficient estimation, and unsourced random access with a massive MIMO receiver [J ] . IEEE Transactions on Information Theory , 2021 , 67 ( 5 ): 2925 - 2951 .
WANG Z R , LIU Y F , LIU L . Covariance-based joint device activity and delay detection in asynchronous mMTC [J ] . IEEE Signal Processing Letters , 2022 , 29 : 538 - 542 .
CHENG L , LIU L , CUI S G . A covariance-based user activity detection and channel estimation approach with novel pilot design [C ] // Proceedings of the 2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC) . Piscataway : IEEE Press , 2020 : 1 - 5 .
CHEN Z L , SOHRABI F , LIU Y F , et al . Phase transition analysis for covariance-based massive random access with massive MIMO [J ] . IEEE Transactions on Information Theory , 2022 , 68 ( 3 ): 1696 - 1715 .
ZHANG Z , LI Y , HUANG C , et al . DNN-aided block sparse Bayesian learning for user activity detection and channel estimation in grant-free non-orthogonal random access [J ] . IEEE Transactions on Vehicular Technology , 2019 , 68 ( 12 ): 12000 - 12012 .
LI Y , XIA M H , WU Y C . Activity detection for massive connectivity under frequency offsets via first-order algorithms [J ] . IEEE Transactions on Wireless Communications , 2019 , 18 ( 3 ): 1988 - 2002 .
LIU W , CUI Y , YANG F , et al . MLE-based device activity detection for grant-free massive access under frequency offsets [C ] // Proceedings of the ICC 2022 - IEEE International Conference on Communications . Piscataway : IEEE Press , 2022 : 1 - 6 .
YUAN L H , ZHAO Q B , CAO J T . High-order tensor completion for data recovery via sparse tensor-train optimization [C ] // Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) . Piscataway : IEEE Press , 2018 : 1258 - 1262 .
BARTOSZUK M , LITWIN J , WNUK M , et al . Tensor-based approach to big data processing and machine learning [C ] // Proceedings of the 2022 IEEE International Conference on Big Data (Big Data) . Piscataway : IEEE Press , 2022 : 6188 - 6194 .
冯凯辉 , 刘陈 , 黄钲 , 等 . 基于张量分解和流形优化的双IRS辅助毫米波MIMO系统信道估计 [J ] . 物联网学报 , 2024 , 8 ( 4 ): 119 - 128 .
FENG K H , LIU C , HUANG Z , et al . Channel estimation for double IRS-assisted millimeter wave MIMO systems based on tensor decomposition and manifold optimization [J ] . Chinese Journal on Internet of Things , 2024 , 8 ( 4 ): 119 - 128 .
张华 , 冯大政 , 庞继勇 . 时域卷积信号的交替最小二乘盲分离算法 [J ] . 电子与信息学报 , 2010 , 32 ( 10 ): 2506 - 2510 .
ZHANG H , FENG D Z , PANG J Y . Time-domain convolutive blind separation based on alternative least-squares [J ] . Journal of Electronics & Information Technology , 2010 , 32 ( 10 ): 2506 - 2510 .
LI N , KINDERMANN S , NAVASCA C . Some convergence results on the regularized alternating least-squares method for tensor decomposition [J ] . Linear Algebra and Its Applications , 2013 , 438 ( 2 ): 796 - 812 .
KOLDA T G , BADER B W . Tensor decompositions and applications [J ] . SIAM Review , 2009 , 51 ( 3 ): 455 - 500 .
SIDIROPOULOS N D , DE LATHAUWER L , FU X , et al . Tensor decomposition for signal processing and machine learning [J ] . IEEE Transactions on Signal Processing , 2017 , 65 ( 13 ): 3551 - 3582 .
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构