1.哈尔滨工业大学航天学院,黑龙江 哈尔滨 150001
2.智慧农场技术与系统全国重点实验室,黑龙江 哈尔滨 150001
3.哈尔滨工业大学计算学部,黑龙江 哈尔滨 150001
[ "刘翔宇(1994‒ ),女,哈尔滨工业大学航天学院博士生,主要研究方向为低轨道卫星辅助定位。" ]
[ "李东博(1989‒ ),男,博士,哈尔滨工业大学计算学部副教授,主要研究方向为空天地一体化网络、卫星通信与导航、AIoT、移动边缘计算。" ]
[ "刘劼(1972‒ ),男,博士,哈尔滨工业大学讲席教授,智慧农场技术与系统全国重点实验室主任,国家高层次人才,IEEE Fellow、ACM杰出科学家、ACM SIGBED China主席。主要研究方向为物联网系统、移动计算与人工智能。" ]
收稿:2024-10-09,
修回:2025-05-30,
纸质出版:2025-09-10
移动端阅览
刘翔宇,李东博,刘劼.低轨卫星定位:探索与展望[J].物联网学报,2025,09(03):17-27.
LIU Xiangyu,LI Dongbo,LIU Jie.Low earth orbit satellite positioning: exploration and prospects[J].Chinese Journal on Internet of Things,2025,09(03):17-27.
刘翔宇,李东博,刘劼.低轨卫星定位:探索与展望[J].物联网学报,2025,09(03):17-27. DOI: 10.11959/j.issn.2096-3750.2025.00434.
LIU Xiangyu,LI Dongbo,LIU Jie.Low earth orbit satellite positioning: exploration and prospects[J].Chinese Journal on Internet of Things,2025,09(03):17-27. DOI: 10.11959/j.issn.2096-3750.2025.00434.
全球导航卫星系统(GNSS
global navigation satellite system)可以在日常生活中为人们提供全天候的定位、导航和授时(PNT
positioning
navigation and time)服务,然而,人们对定位的需求不仅局限于生活中,在高纬度地区、人烟稀少的偏远地区和复杂环境地区,GNSS的地面基础设施不完善,严重影响GNSS的定位精度和速度,一旦有紧急情况发生,很难迅速缩小目标的搜索范围并确定位置,从而导致更大的损失和危险。低轨道(LEO
low earth orbit)卫星从卫星数量、卫星信号频率、卫星定位原理等方面,均可以弥补GNSS在上述地区定位的不足。首先,介绍了LEO卫星的定位原理;然后,对LEO卫星定位技术的现状进行了总结和分析;最后,探讨了实现LEO卫星定位技术的挑战,以及未来的研究方向。
Global navigation satellite systems (GNSS) can provide all-day positioning
navigation
and timing (PNT) services in our daily life. However
the requirement of location is not limited to daily life. In high latitude areas
sparsely populated remote areas
and complex environmental areas
the ground infrastructure of GNSS is incomplete
which greatly affects the positioning accuracy and speed of GNSS. Once an emergency occurs
it is difficult to quickly narrow down the search range of the target
resulting in great losses and dangers. Low earth orbit (LEO) satellites can compensate for the shortcomings of GNSS positioning in the above-mentioned areas in terms of satellite quantity
satellite signal frequency
and satellite positioning principle. Firstly
the principle of LEO satellite positioning was introduced. Then
the research status of LEO satellite positioning technology was summarized and analyzed. Finally
the challenges of LEO satellite positioning technology and future research directions were explored.
沈学民 , 承楠 , 周海波 , 等 . 空天地一体化网络技术: 探索与展望 [J ] . 物联网学报 , 2020 , 4 ( 3 ): 3 - 19 .
SHEN X M , CHENG N , ZHOU H B , et al . Space-air-ground integrated networks: review and prospect [J ] . Chinese Journal on Internet of Things , 2020 , 4 ( 3 ): 3 - 19 .
LI D B , ZHANG J J , TIAN P Y , et al . Boosting bandwidth convergence: optimizing resource allocation in satellite-terrestrial integrated networks [C ] // Proceedings of the 2023 IEEE 23rd International Conference on Communication Technology (ICCT) . Piscataway : IEEE Press , 2023 : 1141 - 1146 .
ZHAO C , QIN H L , WU N , et al . Analysis of baseline impact on differential Doppler positioning and performance improvement method for LEO opportunistic navigation [J ] . IEEE Transactions on Instrumentation and Measurement , 2023 , 72 : 8501110 .
杨元喜 . 弹性PNT基本框架 [J ] . 测绘学报 , 2018 , 47 ( 7 ): 893 - 898 .
YANG Y X . Resilient PNT concept frame [J ] . Acta Geodaetica et Cartographica Sinica , 2018 , 47 ( 7 ): 893 - 898 .
DENG Z X , FAN G W , HE C L . Research on Doppler locating method of LEO satellite backup navigation system [M ] // China Satellite Navigation Conference (CSNC) 2017 Proceedings: Volume II . Singapore : Springer Singapore , 2017 : 487 - 496 .
PARKINSON B W , STANSELL T , BEARD R , et al . A history of satellite navigation [J ] . NAVIGATION , 1995 , 42 ( 1 ): 109 - 164 .
刘洋 , 魏锋 , 崔树成 , 等 . 低轨道卫星通信与物联网应用研究 [J ] . 物联网学报 , 2019 , 3 ( 4 ): 101 - 108 .
LIU Y , WEI F , CUI S C , et al . Research on the application of LEO satellite communication and Internet of things [J ] . Chinese Journal on Internet of Things , 2019 , 3 ( 4 ): 101 - 108 .
MORALES J , KHALIFE J , KASSAS Z M . Simultaneous tracking of orbcomm LEO satellites and inertial navigation system aiding using Doppler measurements [C ] // Proceedings of the 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring) . Piscataway : IEEE Press , 2019 : 1 - 6 .
CAO X Y , SHEN F , ZHANG S J , et al . Satellite availability and positioning performance of uncombined precise point positioning using BeiDou-2 and BeiDou-3 multi-frequency signals [J ] . Advances in Space Research , 2021 , 67 ( 4 ): 1303 - 1316 .
KHALIFE J , NEINAVAIE M , KASSAS Z M . The first carrier phase tracking and positioning results with starlink LEO satellite signals [J ] . IEEE Transactions on Aerospace and Electronic Systems , 2022 , 58 ( 2 ): 1487 - 1491 .
LEVANON N . Theoretical bounds on random errors in satellite Doppler navigation [J ] . IEEE Transactions on Aerospace and Electronic Systems , 1984 , AES-20( 6 ): 810 - 816 .
LEVANON N . Quick position determination using 1 or 2 LEO satellites [J ] . IEEE Transactions on Aerospace and Electronic Systems , 1998 , 34 ( 3 ): 736 - 754 .
COLLETTINI L , FREZZA L , PIERGENTILI F , et al . Performance analysis of a time difference of arrival sensors network for LEO satellites orbit determination [J ] . Aerospace Science and Technology , 2023 , 142 : 108601 .
常娥 , 冷卫杰 . 工业互联网无线室内定位技术概述 [J ] . 物联网学报 , 2020 , 4 ( 2 ): 129 - 135 .
CHANG E , LENG W J . Summary of wireless indoor positioning technology in industry Internet [J ] . Chinese Journal on Internet of Things , 2020 , 4 ( 2 ): 129 - 135 .
MORALES-FERRE R , LOHAN E S , FALCO G , et al . GDOP-based analysis of suitability of LEO constellations for future satellite-based positioning [C ] // Proceedings of the 2020 IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE) . Piscataway : IEEE Press , 2020 : 147 - 152 .
SUDAROLI P V , KANNAN S , NAGARAJAN N . User position estimation for search and rescue using satellite in LEO constellation [J ] . IEE Proceedings-Radar, Sonar and Navigation , 1997 , 144 ( 1 ): 22 .
YANG M H , BAO Y C , WU C L . Single satellite positioning error analysis and performance simulation based on LEO constellation [M ] // China Satellite Navigation Conference (CSNC 2022) Proceedings . Singapore : Springer Nature Singapore , 2022 : 119 - 128 .
张雨露 , 李桢 , 施闯 , 等 . 大规模低轨星座多普勒定位算法 [J ] . 天地一体化信息网络 , 2024 , 5 ( 1 ): 84 - 94 .
ZHANG Y L , LI Z , SHI C , et al . Doppler positioning performance of LEO mega constellation [J ] . Space-Integrated-Ground Information Networks , 2024 , 5 ( 1 ): 84 - 94 .
YANG Z X , LIU H , QIAN C , et al . Real-time estimation of low earth orbit (LEO) satellite clock based on ground tracking stations [J ] . Remote Sensing , 2020 , 12 ( 12 ): 2050 .
GE H B , LI B F , NIE L W , et al . LEO constellation optimization for LEO enhanced global navigation satellite system (LeGNSS) [J ] . Advances in Space Research , 2020 , 66 ( 3 ): 520 - 532 .
PROL F S , KAASALAINEN S , LOHAN E S , et al . Simulations using LEO-PNT systems: a brief survey [C ] // Proceedings of the 2023 IEEE/ION Position, Location and Navigation Symposium (PLANS) . Piscataway : IEEE Press , 2023 : 381 - 387 .
WANG S X , TANG X M , LIU X H , et al . Doppler frequency-code phase division multiple access technique for LEO navigation signals [J ] . GPS Solutions , 2022 , 26 ( 3 ): 98 .
NEINAVAIE M , KHALIFE J , KASSAS Z M . Blind Doppler tracking and beacon detection for opportunistic navigation with LEO satellite signals [C ] // Proceedings of the 2021 IEEE Aerospace Conference (50100) . Piscataway : IEEE Press , 2021 : 1 - 8 .
LI X , YUAN Y Q , HAN X J , et al . Toward wide-area and high-precision positioning with LEO constellation augmented PPP-RTK [J ] . IEEE Transactions on Instrumentation and Measurement , 2023 , 73 : 5500213 .
JIANG M Y , QIN H L , ZHAO C , et al . LEO Doppler-aided GNSS position estimation [J ] . GPS Solutions , 2021 , 26 ( 1 ): 31 .
WANG L , CHEN R Z , XU B Z , et al . The challenges of LEO based navigation augmentation system-lessons learned from Luojia-1A satellite [M ] // China Satellite Navigation Conference (CSNC) 2019 Proceedings . Singapore : Springer Singapore , 2019 : 298 - 310 .
MORTLOCK T , KASSAS Z M . Assessing machine learning for LEO satellite orbit determination in simultaneous tracking and navigation [C ] // Proceedings of the 2021 IEEE Aerospace Conference (50100) . Piscataway : IEEE Press , 2021 : 1 - 8 .
KASSAS Z M , KHAIRALLAH N , KOZHAYA S . Ad astra: simultaneous tracking and navigation with megaconstellation LEO satellites [J ] . IEEE Aerospace and Electronic Systems Magazine , 2024 , 39 ( 9 ): 46 - 71 .
ZHU J F , SUN Y H , PENG M G . Timing advance estimation in low earth orbit satellite networks [J ] . IEEE Transactions on Vehicular Technology , 2024 , 73 ( 3 ): 4366 - 4382 .
沈利荣 , 李守兵 , 孙海峰 , 等 . 基于Starlink机会信号/INS的组合导航方法 [J ] . 导航定位与授时 , 2024 , 11 ( 2 ): 72 - 82 .
SHEN L R , LI S B , SUN H F , et al . Integrated navigation method based on Starlink opportunity signal/INS [J ] . Navigation Positioning and Timing , 2024 , 11 ( 2 ): 72 - 82 .
SAROUFIM J , HAYEK S W , KASSAS Z M . Simultaneous LEO satellite tracking and differential LEO-aided IMU navigation [C ] // Proceedings of the 2023 IEEE/ION Position, Location and Navigation Symposium (PLANS) . Piscataway : IEEE Press , 2023 : 179 - 188 .
YANG C , SOLOVIEV A . Starlink Doppler and Doppler rate estimation via coherent combining of multiple tones for opportunistic positioning [C ] // Proceedings of the 2023 IEEE/ION Position, Location and Navigation Symposium (PLANS) . Piscataway : IEEE Press , 2023 : 1143 - 1153 .
秦红磊 , 张宇 . 星链机会信号定位方法 [J ] . 导航定位学报 , 2023 , 11 ( 1 ): 67 - 73 .
QIN H L , ZHANG Y . Positioning technology based on starlink signal of opportunity [J ] . Journal of Navigation and Positioning , 2023 , 11 ( 1 ): 67 - 73 .
TAN Z Z , QIN H L , CONG L , et al . Positioning using IRIDIUM satellite signals of opportunity in weak signal environment [J ] . Electronics , 2020 , 9 ( 1 ): 37 .
HUMPHREYS T E , IANNUCCI P A , KOMODROMOS Z M , et al . Signal structure of the starlink ku-band downlink [J ] . IEEE Transactions on Aerospace and Electronic Systems , 2023 , 59 ( 5 ): 6016 - 6030 .
NEINAVAIE M , KHALIFE J , KASSAS Z M . Acquisition, Doppler tracking, and positioning with starlink LEO satellites: first results [J ] . IEEE Transactions on Aerospace and Electronic Systems , 2022 , 58 ( 3 ): 2606 - 2610 .
ZHANG Y , QIN H L , SHI G T . Doppler positioning based on globalstar signals of opportunity [C ] // Proceedings of the 2023 5th International Conference on Electronic Engineering and Informatics (EEI) . Piscataway : IEEE Press , 2023 : 666 - 669 .
NEINAVAIE M , KHALIFE J , KASSAS Z M . Doppler stretch estimation with application to tracking globalstar satellite signals [C ] // Proceedings of the MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM) . Piscataway : IEEE Press , 2021 : 647 - 651 .
崔志颖 , 岳富占 , 田润 , 等 . 基于铱星突发信号的导航定位技术研究 [J ] . 全球定位系统 , 2021 , 46 ( 2 ): 77 - 85 .
CUI Z Y , YUE F Z , TIAN R , et al . Research on positioning technology based on Iridium burst signal [J ] . GNSS World of China , 2021 , 46 ( 2 ): 77 - 85 .
陈任翔 , 钟志刚 , 解宁宇 . 基于低轨通信卫星的差分定位性能仿真研究 [J ] . 无线电工程 , 2023 , 53 ( 3 ): 686 - 692 .
CHEN R X , ZHONG Z G , XIE N Y . Research on differential positioning performance simulation based on LEO communication satellites [J ] . Radio Engineering , 2023 , 53 ( 3 ): 686 - 692 .
SAROUFIM J , HAYEK S , KASSAS Z M . Analysis of satellite ephemeris error in differential and non-differential navigation with LEO satellites [C ] // Proceedings of the 2024 IEEE Aerospace Conference . Piscataway : IEEE Press , 2024 : 1 - 9 .
WANG D Y , QIN H L , HUANG Z G . Doppler positioning of LEO satellites based on orbit error compensation and weighting [J ] . IEEE Transactions on Instrumentation and Measurement , 2023 , 72 : 5502911 .
WANG K , EL-MOWAFY A . LEO satellite clock analysis and prediction for positioning applications [J ] . Geo-spatial Information Science , 2022 , 25 ( 1 ): 14 - 33 .
BARON A , GURFIL P , ROTSTEIN H . Implementation and accuracy of Doppler navigation with LEO satellites [J ] . NAVIGATION: Journal of the Institute of Navigation , 2024 , 71 ( 2 ): navi. 649 .
WANG D Y , QIN H L , LIANG H Y , et al . Clock error analysis and compensation for LEO signal of opportunity positioning [J ] . IEEE Sensors Journal , 2024 , 24 ( 8 ): 12716 - 12727 .
PRATT J , AXELRAD P , LARSON K M , et al . Satellite clock bias estimation for iGPS [J ] . GPS Solutions , 2013 , 17 ( 3 ): 381 - 389 .
YANG C Q , ZANG B , GU B W , et al . Doppler positioning of dynamic targets with unknown LEO satellite signals [J ] . Electronics , 2023 , 12 ( 11 ): 2392 .
李桢 , 施闯 . 大规模低轨星座的实时精密定轨技术 [J ] . 天地一体化信息网络 , 2024 , 5 ( 1 ): 76 - 83 .
LI Z , SHI C . Realtime precise orbit determination technology for LEO mega-constellation [J ] . Space-Integrated-Ground Information Networks , 2024 , 5 ( 1 ): 76 - 83 .
IMAD M , GRENIER A , ZHANG X L , et al . Ionospheric error models for satellite-based navigation: paving the road towards LEO-PNT solutions [J ] . Computers , 2024 , 13 ( 1 ): 4 .
GUO F F , SHEN Y Y . LEO satellite localization of receiver in motion using signal frequency of arrival [J ] . Journal of Physics: Conference Series , 2023 , 2569 ( 1 ): 012066 .
SHI C , ZHANG Y L , LI Z . Revisiting Doppler positioning performance with LEO satellites [J ] . GPS Solutions , 2023 , 27 ( 3 ): 126 .
North American Aerospace Defense Command (NORAD), Two-line element sets [EB ] . [ 2024-09-30 ] .
KOZHAYA S E , HAIDAR-AHMAD J A , ABDALLAH A A , et al . Comparison of neural network architectures for simultaneous tracking and navigation with LEO satellites [C ] // Proceedings of the ION GNSS+, The International Technical Meeting of the Satellite Division of The Institute of Navigation . Institute of Navigation , 2021 : 2507 - 2520 .
LI D B , LIU X Y , YIN Z S , et al . CWGAN-based channel modeling of convolutional autoencoder-aided SCMA for satellite-terrestrial communication [J ] . IEEE Internet of Things Journal , 2024 , 11 ( 22 ): 36775 - 36785 .
NEINAVAIE M , KASSAS Z M . Cognitive sensing and navigation with unknown OFDM signals with application to terrestrial 5G and starlink LEO satellites [J ] . IEEE Journal on Selected Areas in Communications , 2024 , 42 ( 1 ): 146 - 160 .
张兆维 , 刘琳 , 刘慧 , 等 . 空间通信载波多普勒频偏捕获的两阶段稀疏算法 [J ] . 物联网学报 , 2024 , 8 ( 2 ): 36 - 45 .
ZHANG Z W , LIU L , LIU H , et al . Two-stage-sparse algorithm for carrier Doppler-shift acquisition in space communications [J ] . Chinese Journal on Internet of Things , 2024 , 8 ( 2 ): 36 - 45 .
IANNUCCI P A , HUMPHREYS T E . Fused low-earth-orbit GNSS [J ] . IEEE Transactions on Aerospace and Electronic Systems , 2024 , 60 ( 4 ): 3730 - 3749 .
0
浏览量
71
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621