南京航空航天大学机电学院,江苏 南京 210016
[ "王立平(1990‒ ),男,博士,南京航空航天大学机电学院助理研究员,主要研究方向为自组织智能制造系统及其关键使能技术。" ]
[ "赵振(1998‒ ),男,南京航空航天大学机电学院博士生,主要研究方向为工业大模型驱动的多智能体智能制造系统。" ]
[ "刘长春(1995‒ ),男,博士,南京航空航天大学机电学院助理研究员,主要研究方向为基于深度强化学习的设备状态分析与人机协作。" ]
[ "唐敦兵(1972‒ ),男,博士,南京航空航天大学机电学院教授,主要研究方向为工业互联网与数字孪生。" ]
收稿:2024-11-28,
修回:2025-01-23,
纸质出版:2025-12-10
移动端阅览
王立平,赵振,刘长春等.基于蒙特卡洛树搜索的自组织制造车间任务调度优化[J].物联网学报,2025,09(04):91-104.
WANG Liping,ZHAO Zhen,LIU Changchun,et al.Optimization of task scheduling in self organizing manufacturing workshop based on Monte Carlo tree search[J].Chinese Journal on Internet of Things,2025,09(04):91-104.
王立平,赵振,刘长春等.基于蒙特卡洛树搜索的自组织制造车间任务调度优化[J].物联网学报,2025,09(04):91-104. DOI: 10.11959/j.issn.2096-3750.2025.00468.
WANG Liping,ZHAO Zhen,LIU Changchun,et al.Optimization of task scheduling in self organizing manufacturing workshop based on Monte Carlo tree search[J].Chinese Journal on Internet of Things,2025,09(04):91-104. DOI: 10.11959/j.issn.2096-3750.2025.00468.
自组织制造模式结合现有的工业互联技术、无线网络技术、分布式计算技术和人工智能技术并加以应用,将传统制造资源封装为具有高自主性、高适应性和高功能性的制造单元,并通过与其他制造单元的交互,完成制造任务的自组织协商分配。在这个过程中,为了构建制造任务智能分配和自组织资源配置的快速响应机制,实现制造任务与制造资源的高效、动态匹配,将多智能体合同网协议与蒙特卡洛树搜索算法相结合,提出了制造车间控制系统自组织运作机制与制造任务调度优化方法。最后,通过离散车间任务分配案例对所提方法的实际可行性进行了验证。实验结果证明,该方法更易实现“单步协商、全域寻优”这一目标。
The self organizing manufacturing model was combined with the existing industrial interconnection technology
wireless network technology
distributed computing technology
and artificial intelligence technology
which can encapsulate traditional manufacturing resources into manufacturing units with high autonomy
adaptability
and functionality. Through interaction with other manufacturing units
self-organizing negotiation and allocation of manufacturing tasks were completed. To develop a rapid response mechanism for the intelligent allocation of manufacturing tasks and self-organizing resource distribution
the multi-agent contract net protocol (CNP) was integrated with the Monte Carlo tree search (MCTS) algorithm. Based on this
dynamic matching between manufacturing tasks and resources was achieved. Apart from this
a self-organizing operational mechanism and an optimization method were accomplished for the scheduling of manufacturing workshop control systems. Finally
the practical feasibility of the proposed method was verified through a discrete workshop task allocation case. The experimental results indicate that the method can better achieve the goal of "one-step negotiation and global optimization".
ACATECH . Cyber-Physical systems: driving force for innovations in mobility, health, energy and production [M ] . Berlin : Springer International Publishing , 2012 .
王世进 . 基于自治与协商机制的柔性制造车间智能调度技术研究 [D ] . 上海 : 上海交通大学 , 2008 .
WANG S J . Intelligent scheduling technology inflexible manufacturing shop floor based on mechanism of autonomy and coordination [D ] . Shanghai : Shanghai Jiao Tong University , 2008 .
WANG L C , LIN S K . A multi-agent based agile manufacturing planning and control system [J ] . Computers Industrial Engineering , 2009 , 57 ( 2 ): 620 - 640 .
PUJO P , OUNNAR F , POWER D , et al . Wireless Holon network for job shop isoarchic control [J ] . Computers in Industry , 2016 , 83 : 12 - 27 .
REAIDY J , MASSOTTE P , DIEP D . Comparison of negotiation protocols in dynamic agent-based manufacturing systems [J ] . International Journal of Production Economics , 2006 , 99 ( 1/2 ): 117 - 130 .
BARENJI R V , BARENJI A V , HASHEMIPOUR M . A multi-agent RFID-enabled distributed control system for a flexible manufacturing shop [J ] . The International Journal of Advanced Manufacturing Technology , 2014 , 71 ( 9 ): 1773 - 1791 .
程涛 , 吴波 , 杨叔子 , 等 . 支持分布式网络化制造的智能数控系统的研究 [J ] . 中国机械工程 , 2004 , 15 ( 8 ): 688 - 693 .
CHENG T , WU B , YANG S Z , et al . Study on intelligent CNC system for distributed networked manufacturing [J ] . China Mechanical Engineering , 2004 , 15 ( 8 ): 688 - 693 .
RODRIGUES N , OLIVEIRA E , LEITÃO P . Decentralized and on-the-fly agent-based service reconfiguration in manufacturing systems [J ] . Computers in Industry , 2018 , 101 : 81 - 90 .
TEHRANI N N H , SUGIMURA N , IWAMURA K , et al . Multi agent architecture for dynamic incremental process planning in the flexible manufacturing system [J ] . Journal of Intelligent Manufacturing , 2010 , 21 ( 4 ): 487 - 499 .
WANG S Y , WAN J F , ZHANG D Q , et al . Towards smart factory for industry 4.0: a self-organized multi-agent system with big data based feedback and coordination [J ] . Computer Networks , 2016 , 101 : 158 - 168 .
WANG J , ZHANG Y F , LIU Y , et al . Multiagent and bargaining-game-based real-time scheduling for Internet of Things-enabled flexible job shop [J ] . IEEE Internet of Things Journal , 2019 , 6 ( 2 ): 2518 - 2531 .
KIM Y G , LEE S , SON J , et al . Multi-agent system and reinforcement learning approach for distributed intelligence in a flexible smart manufacturing system [J ] . Journal of Manufacturing Systems , 2020 , 57 : 440 - 450 .
MA S Y , DING W , LIU Y , et al . Industry 4.0 and cleaner production: a comprehensive review of sustainable and intelligent manufacturing for energy-intensive manufacturing industries [J ] . Journal of Cleaner Production , 2024 , 467 : 142879 .
GUO C , XIONG W , LIU C X . Prospects and current researches on improvement of contract net protocol [J ] . Journal of Equipment Academy , 2016 ( 27 ): 82 - 89 .
ZHU Y F , LOU P H , QIAN X M , et.al . Research on job shop scheduling method based on improved contract net protocol [J ] . Machine Design and Manufacturing Engineering , 2018 ( 47 ): 97 - 102 .
YEUNG W L . Agent-based manufacturing control based on distributed bid selection and publish-subscribe messaging: a simulation case study [J ] . International Journal of Production Research , 2012 , 50 ( 22 ): 6339 - 6356 .
李浩 , 邢志远 , 李琳利 , 等 . 基于多智能体的工业数字孪生系统云边端架构与关键技术 [J ] . 计算机集成制造系统 , 2024 , 30 ( 11 ): 3755 - 3770 .
LI H , XING Z Y , LI L L , et al . Cloud-edge-device system architecture and key technologies of industrial digital twin system based on multi-agent [J ] . Computer Integrated Manufacturing Systems , 2024 , 30 ( 11 ): 3755 - 3770 .
WANG C , LV Y , WANG Q , et al . Service-oriented real-time smart job shop symmetric CPS based on edge computing [J ] . Symmetry , 2021 , 13 ( 10 ): 1839 .
GUI Y , ZHANG Z Q , TANG D B , et al . Collaborative dynamic scheduling in a self-organizing manufacturing system using multi-agent reinforcement learning [J ] . Advanced Engineering Informatics , 2024 , 62 : 102646 .
WANG X H , ZHANG L , LIN T Y , et al . Solving job scheduling problems in a resource preemption environment with multi-agent reinforcement learning [J ] . Robotics and Computer-Integrated Manufacturing , 2022 , 77 : 102324 .
ZHANG N M , SHEN Y L , DU Y , et al . Counterfactual-attention multi-agent reinforcement learning for joint condition-based maintenance and production scheduling [J ] . Journal of Manufacturing Systems , 2023 , 71 : 70 - 81 .
ZHOU T , TANG D B , ZHU H H , et al . Multi-agent reinforcement learning for online scheduling in smart factories [J ] . Robotics and Computer-Integrated Manufacturing , 2021 , 72 : 102202 .
WASEEM M , CHANG Q . From Nash Q-learning to Nash-MADDPG: advancements in multiagent control for multiproduct flexible manufacturing systems [J ] . Journal of Manufacturing Systems , 2024 , 74 : 129 - 140 .
YE X F , DENG Z Y , SHI Y J , et al . Toward energy-efficient routing of multiple AGVs with multi-agent reinforcement learning [J ] . Sensors , 2023 , 23 ( 12 ): 5615 .
WANG L P , TANG D B , SUN H W , et al . Enabling technology of multiagent manufacturing system: a novel mode of self-organizing IoT manufacturing [J ] . Transactions of Nanjing University of Aeronautics and Astronautics , 2021 , 38 ( 5 ): 876 - 892 .
PULIKOTTIL T , ESTRADA-JIMENEZ L A , UR R H , et al . Agent-based manufacturing: review and expert evaluation [J ] . The International Journal of Advanced Manufacturing Technology , 2023 , 127 ( 5 ): 2151 - 2180 .
ZHOU C M , HUANG B D , FRÄNTI P . A review of motion planning algorithms for intelligent robots [J ] . Journal of Intelligent Manufacturing , 2022 , 33 ( 2 ): 387 - 424 .
LEFRANC G , LOPEZ-JUAREZ I , GATICA G . Enhancing FMS performance through multi-agent systems in the context of industry 4.0 [J ] . Studies in Informatics and Control , 2024 , 33 ( 2 ): 5 - 14 .
HELLIWELL T , MORGAN B , VINCENT A , et al . Reconfigurable scheduling as a discrete-event process: Monte Carlo tree search in industrial manufacturing [C ] // Proceedings of the 2nd International Conference on Innovative Intelligent Industrial Production and Logistics . Setúbal : SCITEPRESS , 2021 : 151 - 162 .
0
浏览量
5
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621